Physics, asked by kondaveetijyotsna200, 6 months ago

Find the diameter of a short cylindrical cast iron post to
support a compressive load of 200 kN. Assume the F.S.
as 10, and ultimate compressive strength of cast iron as
550 N/mm²

WRONG ANSWER WILL BE REPORTED​

Answers

Answered by Anonymous
0

For a Cylindrical Cast Iron Post -

Given :-

\sf{Compressive \: load \: (P) = 200 \: kN = 200\times 10^{3} \: N}

\sf{Compressive \: strength \: (F) = 550 \: N/mm^{2}}

To Find :-

\sf{Diameter \: of \: this \: cylindrical \: iron \: post = ?}

Using Formula :-

\sf{Compressive \: strength=\dfrac{Compressive \: load}{Cross \: section \: Area}}

Solution :-

\sf{F =\dfrac{P}{A}}

\sf{A =\dfrac{P}{F}}

\sf{A =\dfrac{200\times 10^{3}}{550}}

\sf{A =\dfrac{200\times 10^{2}}{55}}

\sf{A =\dfrac{40\times 10^{2}}{11}}

\sf{A = 3.64\times 10^{2} \: mm^{2}}

We know that :-

\sf{Cross \: Section \: Area \: (A) =\dfrac{\pi d^{2}}{4}}

So ,

\sf{\pi d^{2} = 4(3.64\times 10^{2})}

\sf{\pi d^{2} = 4\times 364)}

\sf{\dfrac{22}{7}\times d^{2} = 4\times 364}

\sf{d^{2} =4\times 364\times \dfrac{7}{22}}

\sf{d^{2} =\dfrac{4\times 364}{3.14}}

\sf{d^{2} =\dfrac{400\times 364}{314}}

\sf{d^{2} = 400\times 1.16}

\sf{d^{2} =4\times 116}

\sf{d =\sqrt{464}}

\sf{d =4\sqrt{29}}

\sf{d =4\times 5.39}

\sf{d = 21.56 \: mm}

\sf{d = 21.6 \: mm}

Result :-

\sf{Diameter \: of \: this \: cylindrical \: iron \: post \: is \: 21.6 \: mm.}

Similar questions