Math, asked by laukikpranjal187, 11 months ago

Find the diameter of circle whose center is (3,2) and passes through (-5,6)

Answers

Answered by Sharad001
47

Question :-

 \rm Find \:  the  \: diameter  \: of \:  circle \:  whose \:  center  \\  \rm is \:  (3,2) \:  and  \: passes  \: through \:  (-5,6) .

Answer :-

\to \boxed{ \rm diameter = 8 \sqrt{5} } \:

To Find :-

→ Diameter of circle .

Solution :-

According to the question,

Circle has centre c( 3,2) and passes through the point (-5,6) .

We know that ,

→ Equation of circle which passes through centre (h,k) and has radius is r cm .

  \mapsto \boxed{ \rm  {(x - h)}^{2}  +  {(y - k)}^{2}  =  {r}} \\  \\ \sf we \: have \:  \\   \mapsto \rm \: \:( 3,2)  \to \: h = 3 \: , \: k = 2 \\  \\   \because \rm \blue{ it \: passes \: through \: the} \: point \:  \: ( - 5,6) \\  \: \\  \rm therefore \: , \: r \: is \: the \pink{ \:  distance \:  between \: } \\  \rm  \green{centre \: and \: passing }\: point \: of \: the \: circle \\  \\ \sf hence \\  \rm \red{ r \: is \: the \: distance} \: between \: ( 3,2) \: and \: (  - 5,6) \\  \\  \because \:

Now ,

 \mapsto \rm \: r =  \sqrt{ {( - 5 - 3)}^{2}  +  {(6 - 2)}^{2} }  \\  \\  \mapsto \rm \: r =  \sqrt{ {( - 8)}^{2} + 16 }   \\  \\  \mapsto \rm \:  r =  \sqrt{64 + 16}  \\  \\  \mapsto \rm \: r =  \sqrt{80}  \\  \\  \mapsto  \:  \boxed{\rm \: r = 4\sqrt{5} } \\  \\  \sf \: we \: know \: that \\  \\  \to \rm \:  diameter = 2 \times radius \\  \\  \to \rm \:  diameter \:  = 2 \times 4 \sqrt{5}  \\  \\  \to \boxed{ \rm diameter = 8 \sqrt{5} }

Similar questions
Math, 1 year ago