Math, asked by 2405MOHIT, 6 hours ago

find the diameter of circle whose centre is origin of axis & one point on circle is (1,1)​

Attachments:

Answers

Answered by BrainlyConqueror0901
10

\tt\blue{\underline{Answer:}}

\green{\tt\therefore Diameter \: of \: circle  = 2 \sqrt{2} \: units}

 \tt  \green{\underline{Given : }} \\  \tt:  \implies Centre \: of \: circle = (0,0) \\  \\ \tt:  \implies Point \: on \: circle = (1,1) \\  \\ \tt  \red{\underline{ To \: Find : }} \\  \tt:  \implies Diameter \: of \: circle =?

\tt\orange{\underline{Step-by-step\:\:explanation:}}

According to given question :

 \circ  \: \sf Let \: centre \: be \: C = (0,0) \\  \\   \sf\circ \:  point \: on \: the \: circle  \: A= (1,1)\\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies AC =  \sqrt{(x_{2} -  x_{1})^{2} + ( y_{2}  -  y_{1} )^{2} }  \\  \\ \tt:  \implies AC= \sqrt{(1 - 0)^{2}  +  {(1 - 0)}^{2} }  \\  \\ \tt:  \implies AC=  \sqrt{1 + 1}  \\  \\ \tt:  \implies AC = \sqrt{2}  \: units \\  \\   \sf\because \: AC = Radius \: of \: circle \\  \\   \sf \green{\therefore Diameter \: of \: circle = 2R= 2 \sqrt{2} \: units}

Answered by Anonymous
22

\small\bold\red{Given:-}

  • Centre of circle = ( 0 , 0 )
  • Point on circle = ( 1 , 1 )

\small\bold\green{To \:  Find:-}

  • Diameter of circle .

\small\bold\pink{Solution:-}

  • Let the Centre C = ( 0 , 0 )
  • Point on the circle A =( 1 , 1 )

\small\bold{Radius  \: of  \: the \:  circle \:  AC =}

 =  \sqrt{ {(1 - 0})^{2} +  {(1 - 0)}^{2}  }  \\  =  \sqrt{1 + 1 }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  =  \sqrt{2 \:}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence ,

  • AC = 2

\small\bold{diameter \:  of \:  circle  = 2r = 2 \sqrt{2} units}

Similar questions