Find the diameter of the image of the moon formed by a spherical concave mirror of focal length 7.6 m. The diameter of the moon is 3450 km and the distance between the earth and the moon is 3.8 × 105 km.
Answers
The required diameter of the moon's image is 6.9cm.
Focal length of the concave mirror, f = − 7.6m (Given)
Distance between earth and moon taken as object distance, u = −3.8 × 10`5 km (Given)
Diameter of moon = 3450 km (Given)
Using the mirror equation - 1/v = 1/u + 1/f
= 1/v + ( - 1/ 3.8 × 10`8)
= -1/7.6
Magnification = m = -v/u = dimage/ dobject
= - 7.6 / -3.8 . 10`8 = dimage / 3450 × 10³
dimage = 3450 × 7.6 × 10³ / 3.8 × 10`8
= - 0.069
= - 6.9
Thus, the required diameter of the moon's image is 6.9cm.
The diameter of the image of the moon formed by a spherical concave mirror of focal length 7.6 m is 6.9 cm.
Explanation:
Given data in the question
Spherical concave focal length mirror f = -7.6 cm
Where, f is focal length
Moon diameter = 3450 km
u = - 3.8 x 10 ⁵ = Which is quite big compared to f.
So we could consider it as ∞ .
Image will at formed at focus, which is inverted
Here, v = -7.6m
= 6.9 cm.
Therefore, the diameter of the image is 6.9 cm.