Math, asked by pranavdeore020706, 10 months ago

find the difference between compound interest and simple interest on Rs 45000 at 12 % per annul for 3years​

Answers

Answered by Anonymous
135

\huge{\red{\underline{\rm{Solution:}}}}

{\blue{\underline{\sf{Given:}}}}

\sf{\implies Principal\;amount\;(P)=Rs.\;45,000}

\sf{\implies Rate\;of\;interest\;(r)=12\%}

\sf{\implies Time\;(t)=3\;years}

{\blue{\underline{\sf{To\;Find:}}}}

\sf{\implies Difference\;between\;compound\;interest\;(CI)\;and\;simple\;interest\;(SI).}

{\blue{\underline{\sf{Formula\;used:}}}}

\sf{\implies Compound\;interest\;(CI)=\Bigg[P\Bigg(1+\dfrac{r}{100}\Bigg)^{t}-1\Bigg]}

\sf{\implies Simple\;interest\;(SI)=\dfrac{PRT}{100}}

\green{\underline{\sf{Now,\;firstly\;we\;will\;calculate\;compound\;interest\;(CI).}}}

\sf{\implies Compound\;interest\;(CI)=\Bigg[P\Bigg(1+\dfrac{r}{100}\Bigg)^{t}-1\Bigg]}

\sf{\implies CI=\Bigg[45000\Bigg(1+\dfrac{12}{100}\Bigg)^{3}-1\Bigg]}

\sf{\implies CI=\Bigg[45000\Bigg(\dfrac{112}{100}\Bigg)^{3}-1\Bigg]}

\sf{\implies CI=\Bigg[45000\Bigg(\dfrac{1404928}{1000000}-1\Bigg)\Bigg]}

\sf{\implies CI=\Bigg[45000\Bigg(\dfrac{1404928-1000000}{1000000}\Bigg)\Bigg]}

\sf{\implies CI=45000\Bigg[\dfrac{404928}{1000000}\Bigg]}

\sf{\implies CI = 45000 \times 0.404928}

\large{\boxed{\boxed{\purple{\sf{\implies CI=Rs.\;18,221.76}}}}}

\green{\underline{\sf{Now,\;We\;will\;calculate\;simple\;interest\;(SI).}}}

\sf{\implies Simple\;interest\;(SI)=\dfrac{PRT}{100}}

\sf{\implies SI=\dfrac{45000\times 12\times 3}{100}}

\sf{\implies SI=\dfrac{1620000}{100}}

\large{\boxed{\boxed{\purple{\sf{\implies SI=Rs.\;16200}}}}}

{\green{\underline{\sf{Now,\;Difference\;between\;CI\;and\;SI\;is,}}}}

\sf{\implies Difference=CI-SI}

\sf{\implies Difference=18,221.76-16,200}

\huge{\boxed{\boxed{\red{\sf{\implies Difference=Rs.\;2,021.76}}}}}


Anonymous: Great ! ❤️
Answered by Anonymous
134

AnswEr :

  • Principal = Rs. 45,000
  • Rate = 12% p.a.
  • Time = 3 Years

 \leadsto\sf{Difference = Compound  \: Interest  -  Simple \:  Interest}

 \leadsto\sf{Diff. = \bigg[P \bigg(1 + \dfrac{r}{100}   \bigg)^{t}  - 1  \bigg]-   \bigg[\dfrac{PRT}{100} }\bigg]

  • Plugging the Values

 \leadsto\sf{Diff. = \bigg[45000 \bigg(1 +  \cancel\dfrac{12}{100}   \bigg)^{3}  - 1  \bigg]-    \bigg[\dfrac{450 \cancel{00} \times 12 \times 3} {\cancel{100}} } \bigg]

 \leadsto\sf{Diff. = \bigg[45000 \bigg(1 + \dfrac{3}{25}   \bigg)^{3}  - 1  \bigg]-   \bigg[450 \times 12 \times 3 } \bigg]

 \leadsto\sf{Diff. = \bigg[45000 \bigg( \dfrac{28}{25}   \bigg)^{3}  - 1  \bigg]-   16200}

 \leadsto\sf{Diff. = \bigg[45000 \bigg( \dfrac{21952}{15625}  - 1\bigg)   \bigg]-   16200}

 \leadsto\sf{Diff. = \bigg( \cancel{45000}  \times \dfrac{6327}{ \cancel{15625}} \bigg)  -  16200}

 \leadsto\sf{Diff. =(2.88 \times 6327) - 16200}

\leadsto\sf{Diff. =18,221.76 - 16,200}

\leadsto\sf{Diff. =Rs. \: 2,021.76}

 \therefore Diff. betw CI and SI is Rs. 2,021.76

Similar questions