Math, asked by mizblack, 1 year ago

find the difference between compound interest and simple interest on a sum of rupees 12000 @ 12% per annum for 2 years​

Answers

Answered by Anonymous
59

AnswEr :

\bf{Given}\begin{cases}\sf{Principal = Rs. \:12000}\\\sf{Rate=12\%\:p.a.}\\ \sf{Time=2 \:Years}\\\text{Find Difference between CI and SI} \end{cases}

Let's Head to the Question Now :

\implies\tt{Difference = Compound  \:Interest - Simple \:Interest} \\ \\\implies\tt{Diff. = \bigg[P \bigg(1 + \dfrac{r}{100} \bigg)^{t} -1 \bigg]- \bigg[\dfrac{PRT}{100} }\bigg] \\ \\\implies\tt{Diff. = \bigg[12000 \bigg(1 + \cancel\dfrac{12}{100} \bigg)^{2} - 1 \bigg]- \bigg[\dfrac{120 \cancel{00} \times12 \times2}{\cancel{100}} }\bigg] \\ \\\implies\tt{Diff. = \bigg[12000 \bigg(1 + \dfrac{3}{25} \bigg)^{2} - 1 \bigg]- \bigg[120 \times12 \times2\bigg]}\\ \\\implies\tt{Diff. = \bigg[12000 \bigg(\dfrac{28}{25}  \bigg)^{2} - 1\bigg]- \bigg[1440 \times2\bigg]} \\ \\\implies\tt{Diff. = \bigg[12000 \bigg(\dfrac{784}{625} - 1 \bigg) \bigg]- 2880} \\ \\\implies\tt{Diff. = \bigg[12000  \times\dfrac{159}{625}\bigg]- 2880} \\ \\\implies\tt{Diff. = \bigg[19.2 \times 159\bigg]- 2880} \\ \\\implies\tt{Diff. = Rs. \:(3052.8 - 2880)} \\ \\\implies \large\boxed{\tt{Diff. =Rs. \:172.8}}

Difference b/w CI and SI is Rs. 172.8

\rule{300}{2}

S H O R T C U T T R I C K :

\longrightarrow \tt Difference = \dfrac{P {r}^{2}}{(100)^{2}} \\ \\\longrightarrow \tt Difference = \dfrac{12\cancel{000} \times {12}^{2} }{10 \cancel{000}}\\ \\\longrightarrow \tt Difference =\dfrac{12 \times 144}{10} \\ \\\longrightarrow \tt Difference =\dfrac{1728}{10} \\ \\\longrightarrow \large \boxed{\tt Difference = Rs. \: 172.8}

Difference b/w CI and SI is Rs. 172.8

NOTE : This Shortcut Trick is only Applicable for 2 Years Interest.

#answerwithquality #BAL

Answered by αmαn4чσu
90

\huge{\red{\underline{\mathfrak{Answer = Rs.172.8}}}}

\underline{\huge{\underline{\purple{Given}}}}

Principal = Rs 2000

Rate = 12% p.a.

Time = 2 Years

\underline{\huge{\mathcal{\purple{To\;find:}}}}

The difference between compound interest and simple interest.

Solution steps

\rightarrow\textbf{Difference = Compound  \:Interest - Simple \:Interest} \\ \\\rightarrow\bold{Diff. = \bigg[P \bigg(1 + \dfrac{r}{100} \bigg)^{t} -1 \bigg]- \bigg[\dfrac{PRT}{100} }\bigg] \\ \\\rightarrow\bold{Diff. = \bigg[12000 \bigg(1 + \cancel\dfrac{12}{100} \bigg)^{2} - 1 \bigg]- \bigg[\dfrac{120 \cancel{00} \times12 \times2}{\cancel{100}} }\bigg] \\ \\\rightarrow\bold{Diff. = \bigg[12000 \bigg(1 + \dfrac{3}{25} \bigg)^{2} - 1 \bigg]- \bigg[120 \times12 \times2\bigg]}\\ \\\rightarrow\bold{Diff. = \bigg[12000 \bigg(\dfrac{28}{25}  \bigg)^{2} - 1\bigg]- \bigg[1440 \times2\bigg]} \\ \\\rightarrow\bold{Diff. = \bigg[12000 \bigg(\dfrac{784}{625} - 1 \bigg) \bigg]- 2880} \\ \\\rightarrow\bold{Diff. = \bigg[12000  \times\dfrac{159}{625}\bigg]- 2880} \\ \\\rightarrow\bold{Diff. = \bigg[19.2 \times 159\bigg]- 2880} \\ \\\rightarrow\bold{Diff. = Rs. \:(3052.8 - 2880)} \\ \\\rightarrow \large{\bold{Diff. =Rs. \:172.8}}

Similar questions