Math, asked by sandhujashan819, 11 months ago

find the difference between compound interest and simple interest on rupees 12,000 and in 3/2 years at10% p.a compounded yearly​

Answers

Answered by BrainlyConqueror0901
115

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Difference=60\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Fiven: }} \\  \tt:  \implies Principal(p) =  12000 \: rupees \\  \\  \tt:\implies Time(t) =  \frac{3}{2}  \: years \\  \\  \tt:  \implies Rate\%(r)= 10\% \\  \\ \red{\underline \bold{To \: Find: }} \\  \tt:  \implies C.I- S.I= ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies S.I=  \frac{p \times r \times t}{100} \\  \\  \tt:  \implies S.I= \frac{12000 \times 10 \times 3}{2 \times 100}  \\ \\ \tt:  \implies S.I= 60 \times 10 \times 3 \\  \\  \green{\tt:  \implies S.I=1800 \: rupees} \\\\ \tt\circ\:For \:first\:year  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies A =p(1 +  \frac{r}{100} ) ^{t}  \\  \\ \tt:  \implies A =12000 \times (1 +  \frac{10}{100} )^{ 1 }  \\  \\ \tt:  \implies A=12000 \times (1 + 0.1)^{1}  \\  \\ \tt:  \implies A =12000 \times (1.1)^{1}  \\  \\ \tt:  \implies A=12000 \times 1.1 \\  \\  \green{\tt:  \implies A =13200 \: rupees}\\\\ \bold{For\:next\:half\:year:}\\ \tt:\implies I=\frac{13200\times 1\times 10}{2\times 100} \\\\ \tt:\implies I=660\:rupees  \\  \bold{For \: compound \: interest : } \\ \tt:  \implies C.I=A - p \\  \\ \tt:  \implies C.I=13200+660 - 12000 \\  \\ \green{\tt:  \implies C.I=1860\: rupees} \\  \\  \bold{For \: Difference : } \\ \tt:  \implies C.I - S.I =1860 - 1800 \\  \\  \green{\tt:  \implies C.I- S.I =60 \: rupees}

Similar questions