Math, asked by joy467, 7 months ago

find the difference between compound interest and simple interest of rupees 7500 at 14% for annum for
2
years​

Answers

Answered by Anonymous
37

Given :-

• Principal(P) = Rs 7500

• Rate(R) = 14%

• Time(T) = 2 years

To Find :-

• What's the difference between the Compound Interest and Simple Interest?

Formula to be used :-

\:  \large \: \boxed{ \sf \: SI  =  \frac{P \times  R \times  T}{100} }

\:    \: \large \boxed{ \sf C.I. =  P (1 +  \frac{r}{100}) ^{t}\: - P}

• Difference = Compound Interest - Simple Interest

Solution :-

At first, we need to find out the value of Simple Interest and Compound Interest.

We know,

 \bigstar \:  \large \: \boxed{ \sf \: SI  =  \frac{P \times  R \times  T}{100} }

Now, put the given values

 \longrightarrow \sf \:  \dfrac{7500 \times 14 \times 2}{100}

 \longrightarrow \sf \cancel \dfrac{210000}{100}

 \longrightarrow \sf \blue{Rs \: 2100}

\therefore Simple Interest is = Rs 2100

Again,

 \bigstar \:    \: \large \boxed{ \sf C.I. =  P (1 +  \frac{r}{100}) ^{t}\: - P}

Substitute the given values

 \longrightarrow \sf \: 7500(1 +  \dfrac{14}{100}) ^{2}- 7500

 \longrightarrow \sf \: 7500(\dfrac{100 + 14}{100}) ^{2} - 7500

 \longrightarrow \sf \: 7500 \times  \dfrac{114}{100}  \times  \dfrac{114}{100} - 7500

 \longrightarrow \sf \cancel  \dfrac{97470000}{10000}-7500

 \longrightarrow \sf  Rs \: 9747 - 7500

 \longrightarrow \sf \blue{Rs \: 2247}

\therefore Compound Interest is = Rs 2247

_________________________________________________

Now, find the difference

Difference = Compound Interest - Simple Interest

 \longrightarrow \sf Rs \: 2247 - Rs \: 2100

 \longrightarrow \sf  \blue{Rs \: 147}

Hence,

\therefore Difference between the Compound Interest and Simple Interest is = Rs 147.

______________________________________________

Answered by simarpreetsinghkhahr
0

Answer:

same as upside

Similar questions