Math, asked by vinayk6903, 10 months ago

Find the difference between compounds interest and simple interest for rs 7400 for 3years at 8%​

Answers

Answered by Cosmique
7

Given

  • Principle , P = Rs. 7400
  • Time , t = 3 years
  • Rate of interest , R = 8 %

To find

● Difference between the Compound interest and Simple interest

Formula used

▶ Formula for calculating Simple interest (S.I.)

\boxed{\sf{S.I.= \frac{P\times R \times t}{100}}}

(where P is the principle , R is the rate of interest , t is the time )

▶ Formula for calculating Compound interest (C.I.)

\boxed{\sf{C.I.=P\left( 1+\frac{R}{100}\right)^{t}-P}}

(where P is the principle , R is the rate of interest , t is the time)

Solution

Calculating S.I.

\implies\sf{S.I.=\frac{7400\times8\times3}{100}}

\implies\underline{\underline{\sf{S.I.=1776\;\;Rs}}}

Calculating C.I.

\implies\sf{C.I.=7400\left(1+\frac{8}{100}\right)^3-7400}

\implies\sf{C.I.=7400\left((1+\frac{8}{100})^3-1\right)}

\implies\sf{C.I.=7400\left(1+\frac{512}{1000000}+\frac{24}{100}(1+\frac{8}{100})-1\right)}

\implies\sf{C.I.=7400\left(\frac{512}{1000000}+\frac{24}{100}+\frac{192}{10000}\right)}

\implies\sf{C.I.=7400\left(\frac{512+240000+19200}{1000000}\right)}

\implies\sf{C.I.=7400\times\frac{259712}{1000000}}

\implies\underline{\underline{\sf{C.I.=1921.8\;\;Rs}}}

Finding the difference b/w C.I. and S.I.

\longmapsto\sf{C.I.-S.I.=1921.8-1776}

\longmapsto\underline{\boxed{\sf{C.I.-S.I.=145.8\;\;Rs}}}

Answered by Ridvisha
35
{ \huge{ \bold{ \underline{ \underline{ \purple{Question:-}}}}}}

▪ Find the difference between compound interest and simple interest on Rs. 7400 for 3 years at 8%.

{ \huge{ \bold{ \underline{ \underline{ \purple{S olution: -}}}}}}

{ \bold{ \underline{ \red{given-}}}}

▪ Principal = P = Rs. 7,400

▪ Rate = R = 8 %

▪ Time = T = 3 years

{ \bigstar \: \: { \underline{ \bold{ \pink{compound \: interest}}}}}



{ \boxed{ \boxed{ \bold{ \red{C.I . = P( {(1 + \frac{R}{100} )}^{T} - 1)}}}}}



{ \bold{ \implies{C.I. = 7400( {(1 + \frac{8}{100}) }^{3} - 1)}}}



{ \bold{ \implies{C .I. = 7400( {(1 + \frac{2}{25} )}^{3} - 1)}}}



{ \bold{ \implies{C .I. = 7400( ({ \frac{27}{25}) }^{3} - 1)}}}



{ \bold{ \implies{C .I. = 7400( \frac{19683}{15625} - 1)}}}



{ \bold{ \implies{C .I. = 7400 \frac{(19683 - 15625)}{15625} }}}



{ \bold{ \implies{C.I . = 7400 \times \frac{4058}{15625} }}}



{ \boxed{ \red{ \bold{compound \: interest =Rs. 1921.87}}}}



{ \bigstar \: \: \: { \bold{ \underline{ \pink{simple \: interest}}}}}



{ \boxed{ \boxed{ \bold{ \red{ \: \: \: S.I . = \frac{P \times R \times T}{100} \: \: \: \: }}}}}



{ \bold{ \implies{S .I. = \frac{7400 \times 8 \times 3}{100} }}}



{ \bold{ \implies{S .I. = 74 \times 8 \times 3}}}



{ \boxed{ \bold{ \red{ \: simple \: interest = Rs. \: 1776 \: }}}}



therefore,

☆ difference between compound interest and simple interest .....



{ \bold{ \orange{ = C .I. \: - \: S.I.}}}



{ \bold{ = Rs. \: 1921.87 - \: Rs. \: 1776}}



{ \bold{ \huge{ \red{ = Rs. \: 145.87}}}}
Similar questions