Math, asked by shivenderlotus, 4 months ago

Find the difference between SI and CI on 15,625 at 12% per annum for 3 years​

Answers

Answered by utsabdahal34
4

Answer:

Step-by-step explanation:

SI=PTR/100

=15625*3*12/100

=562500/100

=5625

CI=P[(1+R/100)^T-1]

=15625[1+12/10)^3-1]

=15625[(1+0.12)^3-1]

=15625[(1.12)^3-1]

=15625[1.404928-1]

=15625*0.404928

-RS 6327

Difference between SI and CI =Rs 6327- Rs 5625

=Rs 702

Answered by Mɪʀᴀᴄʟᴇʀʙ
43

Solution:-

At SI:

Principal (P)  \sf{{= 15,625}}

Rate (R)  \sf{{= 12 \% p.a.}}

Time (T)  \sf{{= 3 \ years}}

Simple Interest \sf\dfrac{= P\times R\times T}{100}

= \sf\dfrac{15625\times 12\times 3}{100}

\sf{{= 5,625}}

At CI:

For I year :-

P  \sf{{= 15,625}}

R  \sf{{= 12 \% p.a.}}

T  \sf{{= 1 \ year}}

I = \sf\dfrac{15625\times 12\times 1}{100}

 \sf{{= 1875}}

Amount (A)  \sf{{=}} P + I

 \sf{{= 15,625 + 1,875}}

 \sf{{= 17,500}}

For II year :-

P  \sf{{= 17,500}}

R  \sf{{= 12\% p.a.}}

T  \sf{{= 1 \ year}}

I = \sf\dfrac{17,500\times 12\times 1}{100}

 \sf{{= 2,100}}

A  \sf{{= 17,500 + 2,100}}

 \sf{{= 19,600}}

For III year :-

P  \sf{{= 19,600}}

R  \sf{{= 12\% p.a.}}

T  \sf{{= 1 \ year}}

I = \sf\dfrac{19,600\times 12\times 1}{100} = \sf{{2,352}}

A  \sf{{= 19,600 + 2,352}}

 \sf{{= 21,952}}

C.I.  \sf{{= 21,952 - 15,625}}

 \sf{{= 6,327}}

∴ C.I. - S.I.  \sf{{= 6,327 - 5,625}}

 \sf{{= 702}}

\LARGE \boxed{\sf{{C.I. - S.I. = 702}}}


shivenderlotus: verry good
Anonymous: Amazing
Mɪʀᴀᴄʟᴇʀʙ: Thank you! :)
Similar questions