Biology, asked by sivyatha8012, 1 year ago

Find the difference between si and ci on rs.2500 for 2 years at 4% p.A., compound interest, interest being compounded semi-annually.

Answers

Answered by GYMlover
6

S.I=P×R×T/100

=2500×4×2/100

=200

Now rate is reckoned as half yearly

So,r =2℅ and time got doubled i.e 2×2=4 years

C.I=P(1+r/100)^t-P

= 2500(1+2/100)^4-2500

=2706.08-2500

=206.08

difference=C.I-S.I

=206.08-200

=6.08

Hope u like it

Answered by Anonymous
31
\sf{\underline{For\:simple\:interest:}}

Principal (P) = Rs. 2,500

Rate (R) = 4\% p.a.

Time (T) = 2 years

\sf{\underline{We\:know\:that:}}

\boxed{\sf{SI= \frac{PRT}{100}}}

\sf{\underline{By\:substituting\:the\:above\:values:}}

\implies \sf{SI= \frac{PRT}{100}}

\implies \sf{SI = \frac{2500 \times 4 \times 2}{100}}

\implies \sf{SI = \frac{20000}{100}}

\implies \sf{SI = Rs.\:200}

\sf{\underline{Therefore:}} SI: Rs. 200

\sf{\underline{For\:compound\:interest:}}

Principal (P) = Rs. 2500

Rate (R) = 4\% p.a. = 2\% per half year

Time (n) = 2 yrs = 4 half yrs

\sf{\underline{We\:know\:that:}}

\boxed{\sf{A= P(1 + \frac{R}{100} ) ^{n}}}

\sf{\underline{By\:substituting\:the\:above\:values:}}

\implies \sf{A= P(1 + \frac{R}{100} ) ^{n}}

\implies \sf{A= 2500(1 + \frac{2}{100} ) ^{4}}

\implies \sf{A = 2500 \times ( \frac{51}{50} ) ^{4} }

\implies \sf{A= Rs.\:2706.0804}

\sf{\underline{Now:}}

\boxed{\sf{CI = A - P}}

\implies \sf{CI= 2706.0804 - 2500}

\implies \sf{CI = Rs.\:206.0804}

\sf{\underline{Therefore:}} CI: Rs. 206.0804

\sf{\underline{Now:}}

\sf{\underline{In\:order\:to\:find\:the\:difference:}}

\boxed{\sf{Difference = CI - SI}}

\implies \sf{D= 206.0804 - 200}

\implies \sf{D= Rs.\:6.08}

\sf{\underline{Answer:}} Rs. 6.08
Similar questions