find the difference between SI and CI on rs5000 at 4% p.a. for three years
Answers
Solution:-
S.I=100P×R×n=1005000×10×3=1500
C.I=P(1+100R)n−P=5000[(1+10010)3−1]=1655
∴C.I−S.I=1655−1500=155
Difference between S.I. and C.I. on Rs.5000 at 4% p.a. for 3 years is 42.32
Explanation:
\rm \bullet \: \: Simple interest = \dfrac{p \times r \times t}{100}∙Simple interest= 100 p×r×t
Where,
p(principal) = Rs.5,000
r(rate) = 4% p.a.
t(time) = 3 years.
\rm = \dfrac{prt}{100}= 100prt
= \dfrac{50 \cancel{00}\times 4 \times 3}{1 \cancel{00} }= 1 0050 00×4×3
= 50 \times 4 \times 3=50×4×3
= 600=600
∴ Simple interest: Rs.600
Now,
Calculating compound interest,
We know,
\rm \: \bullet \: \:Compound \: interest = Amount - Principal∙Compoundinterest=Amount−Principal
Using amount formula,
\rm = p \bigg( 1 + \dfrac{r}{100} \bigg)^{t}=p(1+ 100r) t
Where,
p(principal) = Rs.5000
r(rate) = 4% p.a.
t(time) = 3 years
So, C. I. :-
\rm = p \bigg( 1 + \dfrac{r}{100} \bigg)^{t} - p=p(1+ 100r) t−p
\rm = 5000\bigg( 1 + \dfrac{4}{100} \bigg)^{3} - 5000=5000(1+ 71004) 3−5000
\rm = 5000\bigg( 1 + \dfrac{1}{25} \bigg)^{3} - 5000=5000(1+ 251 ) 3−5000
\rm = 5000\bigg( \dfrac{26}{25} \bigg)^{3} - 5000=5000( 2526 ) 3−5000
\rm = 5000 \times \dfrac{17576}{15625} - 5000=5000×
1562517576and 7−5000
\rm = 5624.32 - 5000=5624.32−5000
= 624.32=624.32
Hence, the difference between S.I. and C.I. is :-
= 642.32 - 600=642.32−600
= 42.32=42.32
∴ Required answer: Rs. 42.32