Math, asked by fahiya83, 8 months ago

Find the difference between simple and compound interest on 500 for 2 years at 8 %p.a​

Answers

Answered by ayushmanalmiya
0

Answer:

Let the sum be Rs.100

Computation of compound interest:

Prinicpal =Rs.100

R=10% per annum and n=2 years.

Amount=Rs.

100×(1+

100

10

)

2

=Rs.

100×(

2

11

)

2

=Rs.121

Computation of simple interest:

Prinicpal =Rs.100

R=10% and Time =2 years.

∴S.I.=Rs.(

100

100×10×2

)=Rs.20

Thus, difference in C.I. and S.I.=Rs.(21−20)=Re.1

Now, if difference between C.I and S.I. is Re.1, Then Sum =Rs.100

If difference between C.I. and S.I. is Rs.500, Then Sum =Rs.(100×500)=Rs.50000

Step-by-step explanation:

please please mark me brain list and follow also

Answered by itzBrainlystarShivam
1

\Huge\boxed {r.s=3.2}

\Large{\textsf{\textbf{\underline{\underline{Given\::}}}}} \\

p = rs.500

r = 8\%p.a.

t = 2 \: years.

\Large{\textsf{\textbf{\underline{\underline{To.find\::}}}}} \\

●diffrence \: between  \\ \: ci \: and \: si

\Large{\textsf{\textbf{\underline{\underline{formulas.used\::}}}}} \\

si =  \frac{prt}{100}

A = p \:   (1 +  \frac{r}{100} )t

c.i = a-p

\Large{\textsf{\textbf{\underline{\underline{solusion\::}}}}} \\

{\bf{1.case\::}} \\

➣to \: find \: s.i.

➣we \: know, \:

➣s.i. =  \frac{p \times r \times t}{100}

➣s.i. =  \frac{500 \times  8 \times 2}{100}

\small{\textsf{\textbf{\underline{\underline{ ➣s.i = 80\::}}}}} \\

{\bf{2.case\::}} \\

➣to \: find \: ci,

➣we \: know, \:

➣A = p(1 +  \frac{r}{100} )t

➣a = 500(1 +  \frac{8}{100} ) {}^{2}

➣a = 500(100 +  \frac{8}{100} ) {}^{2}

➣a = 500( \frac{108}{100} ) {}^{2}

➣a = 500  \times  \frac{108}{100} \times  \frac{108}{100}

\small{\textsf{\textbf{\underline{\underline{➣A = 583.2\::}}}}} \\

{\bf{3.case\::}} \\

➣to.find.c.i

➣we.know. c.i = A - p

➣c.i = 583.2 - 500

\small{\textsf{\textbf{\underline{\underline{➣c.i = 83.2\::}}}}} \\

\small{\textsf{\textbf{\underline{\underline{now.finding.the.diffrence.between.ci.and.si\::}}}}} \\

➣c.i = 83•2

➣s.i = 80

➣difference = r.s  (83.2 - 80)

\Large{\textsf{\textbf{\underline{\underline{➣r.s = 3.2\::}}}}} \\

\Large{\textsf{\textbf{\underline{\underline{form.the.soluaion\::}}}}} \\

●p = principal \\ ●r = rate \: of \: interest \\ ●t = time \\ ●si = simple \: interest \\ ●ci  = compound \: interest \\ ●a = amount

Similar questions