Math, asked by trojan123, 1 year ago

find the difference between the S.I AND C.I on rupees 16000 for 3/2 years at 5% per annum compound interest being reckoned half yearly

Answers

Answered by divya886
6

heyy here is ur answer

in CI IT WILL BE

A=P(1+r/100)^n

a=16000(1+1/20)^3

A=16000*21/20*21/20 *21/20

A=19522

CI=19522-16000

CI=3522

IN SI

SI=P*R*T/100

16000*5*3/100*2

=400

DIFFERENCE=3522-400

=3122

HOPE IT WILL HELP U



divanshuk3pef3zz: okk
divanshuk3pef3zz: itni minnte maine aaj tkk kisi aagey ni kiii... faltu mei hi bhau khaa ri ho
divanshuk3pef3zz: Hehee..good byee..take care
divanshuk3pef3zz: Nahi maine ni rakhki apni care...
Answered by llMissSwagll
16

 \huge \underline \mathfrak \color{blue}{ || \:  \: Answer \:  \:  || }

Difference between Simple Interest And Compound  Interest is Rs. 30.25

__________________________________________

Given:

 Principal, P = Rs. 16000

          Rate of Interest , R = 5% p.a.

          Time = 3/2 years.

To find: 

Difference between Simple Interest And Compound  Interest.

We know that,

SI=\frac{P\time R\times T}{100}SI=100P\timeR×T</p><p>SI=\frac{16000\times5\times\frac{3}{2}}{100}SI=10016000×5×23</p><p>SI=160\times5\times\frac{3}{2}SI=160×5×23</p><p>SI=80\times15SI=80×15</p><p>SI=1200SI=1200

So, Simple Interest, SI = Rs. 1200

Now, For Compound Interest,

R = 5/2% as compounded half yearly

n = number of periods = 2 × 3/2 = 3

So,

A=P(1+\frac{R}{100})^nA=P(1+100R)n</p><p>A=16000(1+\frac{\frac{5}{2}}{100})^3A=16000(1+10025)3</p><p>A=16000(\frac{200+5}{200})^3A=16000(200200+5)3</p><p>A=16000\times\frac{205}{200}\times\frac{205}{200}\times\frac{205}{200}A=16000×200205×200205×200205</p><p>A=16000\times\frac{205}{200}\times\frac{205}{200}\times\frac{205}{200}A=16000×200205×200205×200205

A = Rs. 17230.25

⇒ Compound Interest. CI = A - P = 17230.25 - 16000 = Rs. 1230.25

Thus, Difference Between interest = 1230.25 - 1200 = 30.25

Therefore, Difference between Simple Interest And Compound  Interest is Rs. 30.25

Similar questions