Math, asked by deepti57, 9 months ago

Find the difference between the simple interest and compound interest on Rs 16000 for

1 ½ years at 5% per annum, compound interest being reckoned half yearly?

Answers

Answered by BrainlyConqueror0901
47

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{C.I-S.I=30.25\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies Principal(p) = 16000 \: rupees \\  \\  \tt:  \implies Time(t) =1\frac{1}{2}  \: years \\  \\  \tt:  \implies Rate\%(r) = 5\% \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies C.I - S.I= ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies S.I=  \frac{p \times r \times t}{100}  \\  \\ \tt:  \implies S.I= \frac{16000 \times 5 \times  \frac{3}{2} }{100}  \\  \\ \tt:  \implies S.I= \frac{16000 \times 5 \times 3}{100 \times 2}  \\  \\  \green{\tt:  \implies S.I =1200 \: rupees} \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies A = p(1 +  \frac{\frac{r}{2}}{100} )^{2t}  \\  \\  \tt:  \implies A =16000(1 +  \frac{5}{2\times100} )^{2\times \frac{3}{2} }  \\  \\  \tt:  \implies A= 16000 \times (1 + 0.05)^{ {3} }  \\  \\ \tt:  \implies A=16000 \times 1.076890625 \\  \\  \green{\tt:  \implies A =17230.25 \: rupees} \\  \\  \bold{For \: C.I : }  \\  \tt: \implies ci = a - p \\  \\  \tt:   \implies C.I = 17230.25- 16000 \\  \\  \green{\tt:  \implies C.I =1230.25 \: rupees}\\ \\  \bold{For \: difference} \\ \tt:  \implies Difference = C.I - S.I \\  \\ \tt:  \implies Difference = 1230.25 - 1200 \\  \\  \green{\tt:  \implies Difference =30.25 \: rupees}

Answered by Anonymous
49

Given :-

Principal(p) =16000 rupees

Time (t) =3/2 years

Rate(r %) =5%

To FiND :-

Compound Interest(C. I) - Simple interest(S. I) =?

Solution :-

As we know,

S. I  \:  =  \frac{p \times r \times t}{100}

S. I  \:  =  \frac{1600 0\times  \frac{3}{2} \times 5 }{100}

S. I  \:  = 1200 \: rupees

And the amount(A),

A \:  = p( { \frac{1 +  \frac{r}{2} }{100}) }^{2 \times t}

A \:  = 16000 {(1 +  \frac{5}{2 \times 100} )}^{2}

A \:  = 16000 \times 1.076890(approx) \\ A \:  = 17230.25 \: rupees

Now,

C. I = Amount (A) - principal (p)

C. I= 17230. 25 - 16000

C. I = 1230.25 rupees

Therefore according to the question, we have

C. I - S. I = 1230.25 - 1200

C. I - S. I = 30.25.

Hence the answer is 30.25.

Similar questions