Math, asked by csingh01may, 8 months ago

Find the difference between the simple interest and the compound interest on Rs. 8000 at 10% per annum for 3 years.

Answers

Answered by pandaXop
60

Difference = Rs 248

Step-by-step explanation:

Given:

  • Principal (P) is Rs 8000.
  • Rate (R) is 10% per annum.
  • Time (T) is 3 years.

To Find:

  • What is the difference between Simple and compound interest ?

Solution: Here ,

  • P = Rs 8000
  • R = 10%
  • T = 3 years

Formula for S.I is

S.I = P \times R \times T/100

\implies{\rm } 8000 \times 10 \times 3/100

\implies{\rm } 80 \times 10 \times 3

\implies{\rm } 2400

So, S.I is Rs 2400.

Now, for compound interest formula is

A = P ( 1 + R/100)^n

\implies{\rm } A = 8000 (1 + 10/100)³

\implies{\rm } 8000( 100 + 10/100)³

\implies{\rm } 8000 (110/100)³

\implies{\rm } 8000(11/10)³

\implies{\rm } 8000 \times 1331/1000

\implies{\rm } 8 \times 1331

\implies{\rm } 10648

C.I = Amount – Principal

➮ C.I = Rs (10648 – 8000)

➮ Rs 2648

Then ,Difference between S.I and C.I is

=> C.I – S.I

=> 2648 – 2400

=> Rs 248

Answered by DARLO20
56

\bigstar \sf{\orange{\underline{\underline{\green{To\:Find:-}}}}}

  • The difference between the simple interest and compound interest .

\bigstar \sf{\blue{\underline{\underline{\purple{SOLUTION:-}}}}}

GIVEN :-

  • Principle (P) = Rs. 8000

  • Rate (R) = 10%

  • Time (T) = 3 years

FORMULA :-

1) \checkmark\:\tt{\underline{\green{\boxed{Amount(A)\:=\:P\:(1\:+\:{\dfrac{R}{100}})^t\:}}}}

2) \checkmark\:\tt{\underline{\blue{\boxed{Compound\:interest\:=\:Amount(A)\:-\:Principle(P)\:}}}}

3) \checkmark\:\tt{\underline{\red{\boxed{Simple\:interest\:=\:{\dfrac{PTR}{100}}\:}}}}

CALCULATION :-

1) \tt{\implies\:Amount(A)\:=\:8000\:(1\:+\:{\dfrac{10}{100}})^3\:}

\tt{\implies\:A\:=\:8000\times(1.1)^3\:}

\tt{\implies\:A\:=\:8000\times{1.331}\:

\tt{\implies\:A\:=\:10648\:}</p><p></p><p>2) [tex]\tt{\implies\:compound\:interest\:=\:A\:-\:P\:}

\tt{\implies\:Compound\:interest\:=\:10648\:-\:8000\:}

\tt{\implies\:Compound\:interest\:=\:2648\:}

3) \tt{\implies\:Simple\:interest\:=\:{\dfrac{PTR}{100}}\:}

\tt{\implies\:Simple\:interest\:=\:{\dfrac{8000\times{3}\times{10}}{100}}\:}

\tt{\implies\:Simple\:interest\:=\:2400\:}

☞ Now, difference between C.I and S.I .

\tt{(Compound\:interest)\:-\:(Simple\:interest)\:}

\tt{\:=\:2648\:-\:2400\:}

\tt{\:=\:248\:}

Similar questions