Math, asked by sadhu4uhere, 4 months ago

Find the difference between the simple interest andthe compound intereston Rs. 6000 for 2 years at 8% p.a.

Can i get the answer as quick as possible

thanks in advance

Answers

Answered by itzBrainlystarShivam
27

\Huge\boxed {r.s=38.4}

\Large{\textsf{\textbf{\underline{\underline{Given\::}}}}} \\

  • p = rs.6000
  • r = 8\%p.a.
  • t = 2 \: years.

\Large{\textsf{\textbf{\underline{\underline{To.find\::}}}}} \\

●diffrence \: between  \\ \: ci \: and \: si

\Large{\textsf{\textbf{\underline{\underline{formulas.used\::}}}}} \\

  • si =  \frac{prt}{100}
  • A = p \:   (1 +  \frac{r}{100} )t
  • c.i = a-p

\Large{\textsf{\textbf{\underline{\underline{solusion\::}}}}} \\

{\bf{1.case\::}} \\

➣to \: find \: s.i.

➣we \: know, \:

➣s.i. =  \frac{p \times r \times t}{100}

➣s.i. =  \frac{6000 \times  8 \times 2}{100}

\small{\textsf{\textbf{\underline{\underline{ ➣s.i = 960\::}}}}} \\

{\bf{2.case\::}} \\

➣to \: find \: ci,

➣we \: know, \:

➣A = p(1 +  \frac{r}{100} )t

➣a = 6000(1 +  \frac{8}{100} ) {}^{2}

➣a = 6000(100 +  \frac{8}{100} ) {}^{2}

➣a = 6000( \frac{108}{100} ) {}^{2}

➣a = 6000  \times  \frac{108}{100} \times  \frac{108}{100}

\small{\textsf{\textbf{\underline{\underline{➣A = 6998.4\::}}}}} \\

{\bf{3.case\::}} \\

➣to.find.c.i

➣we.know. c.i = A - p

➣c.i = 6998.4 - 6000

\small{\textsf{\textbf{\underline{\underline{➣c.i = 998.4\::}}}}} \\

\small{\textsf{\textbf{\underline{\underline{now.finding.the.diffrence.between.ci.and.si\::}}}}} \\

➣c.i = 998•4

➣s.i = 960

➣difference = r.s  (998.4 - 960)

\Large{\textsf{\textbf{\underline{\underline{➣r.s = 38.4\::}}}}} \\

\Large{\textsf{\textbf{\underline{\underline{form.the.soluaion\::}}}}} \\

●p = principal \\ ●r = rate \: of \: interest \\ ●t = time \\ ●si = simple \: interest \\ ●ci  = compound \: interest \\ ●a = amount


Saby123: Awesome !
Similar questions