Math, asked by chandrani0106, 1 month ago

Find the difference between the total surface area and the lateral surface area of a cuboid of length 2 m, breadth 1.5 m and height 1 m.​

Answers

Answered by Anonymous
13

\large\sf\underline{Understanding\:the\:question:}

Here in this question we are given length as 2m , breadth as 1.5 m and height as 1 m of a cuboid . We need to find the difference between total surface area and the lateral surface area of the cuboid . So firstly we need to find the Total surface area and then Lateral surface area of the cuboid . We will use some formula and solve this question . So let's begin !

\large\sf\underline{Given\::}

  • Length = 2 m

  • Breadth = 1.5 m

  • Height = 1 m

\large\sf\underline{To\:find\::}

  • Difference between Total surface area and the lateral surface area.

\large\sf\underline{Solution\::}

We know ,

\small\fbox\red{Total\:surface\:area\:=\:2(lb+bh+hl)}

  • Substituting the value of l , b and h in the formula

\sf\implies\:TSA\:=\:2(2 \times 1.5 + 1.5 \times 1 + 1 \times 2)

\sf\implies\:TSA\:=\:2(3 + 1.5 + 2)

\sf\implies\:TSA\:=\:2(3 + \frac{15}{10} + 2)

\sf\implies\:TSA\:=\:2(\frac{30+15+20}{10})

\sf\implies\:TSA\:=\:2(\frac{65}{10})

\sf\implies\:TSA\:=\:2 \times 6.5

\large{\mathfrak\blue{\implies\:TSA\:=\:13\:m^{2}}}

Also we know that ,

\small\fbox\red{Lateral\:surface\:area\:=\:2(l+b)h}

  • Substituting the value of l , b and h in the formula

\sf\implies\:LSA\:=\:2(2 \times 1.5) 1

\sf\implies\:LSA\:=\:2(3)1

\sf\implies\:LSA\:=\:2 \times 3 \times 1

\sf\implies\:LSA\:=\:6 \times 1

\large{\mathfrak\blue{\implies\:LSA\:=\:6\:m^{2}}}

Now let's find the difference between total surface area and lateral surface area :

\sf\:TSA-LSA

  • Substituting the value of TSA and LSA we got

\sf\implies\:(13-6)\:m^{2}

\large{\underline{\boxed{\mathrm\purple{\implies\:7\:m^{2}}}}}

‎ ┏ ━━┅━━━┅━━┅━━━┅┅━━━┅ ┓

\dag\:\underline{\sf Some\:Formula\:related\:to\:cuboid\::}

  • \sf\:TSA=2(lb+bh+hl)

  • \sf\:LSA=2(l+b)h

  • \sf\:Volume=l \times b \times h

  • \sf\:Diagonal= \sqrt{l^{2} \times b^{2} \times h^{2}}

  • \sf\:Perimeter=4(l + b + h)

┗ ━━┅━━━┅━━ ┅━━━┅━━━┅┅┛

!! Hope it helps !!

Similar questions