Math, asked by Arna146, 4 months ago

Find the difference in compound and simple interest on Rs.17,500 for 3 years
if the rate of interest is 4​

Answers

Answered by Anonymous
78

Given:

  • Principal(P) = 17500
  • Times(n) = 3 years
  • Rate of Interest(r) = 4% per annum

To Find:

  • The difference between their simple interest and compound interest

Solution:

Now,

  • Let's firstly find the compound interest of the investment

{ \underline{ \frak{As \: we \: know \: that}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \star{ \underline{ \boxed{ { \sf{Amount = Principal(1  +  \frac{rate}{100}  \big) } {}^{n} }}}}

 \\

And,

 \pink{ \bigstar}{ \underline{ \boxed{  \frak{ compound \: intrest = amount - principal}}}}

 \\

After Substitution we get,

 : \longrightarrow \sf Amount  = Principal \bigg(1 +  \frac{r}{100} \bigg ) {}^{n}  \\  \\  \\  : \longrightarrow \sf Amount  = \: 17500  \bigg(1 +  \frac{4}{100}  \bigg) {}^{3}  \:  \:  \\  \\  \\  : \longrightarrow \sf Amount  =17500 \bigg( \frac{100}{100}  +  \frac{4}{100}  \bigg) {}^{3}  \\  \\  \\  : \longrightarrow \sf Amount  =17500 \bigg( \frac{104}{100}  \bigg) {}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  : \longrightarrow \sf Amount  =175 \cancel{00} \times  \frac{104}{ \cancel{100}}  \times  \frac{104}{100}  \times  \frac{104}{100}  \\  \\  \\  : \longrightarrow \sf Amount  =175 \times 104 \times \frac{104}{100}  \times  \frac{104}{100}  \\  \\  \\ : \longrightarrow \sf Amount  = \frac{175 \times 104 \times 104 \times 104}{10000}  \\  \\  \\  : \longrightarrow \sf Amount  = \frac{196,851,200}{10000}  \\  \\  \\  : \longrightarrow \sf Amount  = \orange{rs.19685.12 \bigstar}

Hence,

  • The amount is 19685 rupees

Now, let's find the Compound Interest

  \purple{ \mapsto}\tt \: compound \: intrest = 19685.12 - 17500 \\  \\  \\   \purple{ \mapsto}\tt \: compound \: intrest =  \blue{rs.2185.12} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Therefore,

  • The compound interest is rupees 2185.12 rupees

 \\

Now, Let's find the simple interest:

As we know that,

\star \: { \underline{ \boxed{ { \mathfrak{simple \: intrest =  \frac{p \times t \times r}{100} }}}}}

 \\

After Substitution we get,

\longrightarrow \tt simple \: intrest =  \frac{175 \cancel{00 }\times 3 \times 4}{ \cancel{100}}  \\  \\  \\  \longrightarrow \tt simple \: intrest =175 \times 3 \times 4 \:  \:  \:  \:  \:  \\  \\  \\ \longrightarrow \tt simple \: intrest = \purple{rs.2100 \bigstar} \:  \:  \:  \:  \:  \:  \:

 \\

Hence,

  • The simple interest is rupees 2100

 \\

Now, Let's find the difference,

  \purple{ \mapsto}\tt \: difference = 2185.12 - 2100 \\  \\  \\   \purple{ \mapsto}\tt \: difference = \blue{85.12rs} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Henceforth,

  • The difference between the compound interest and the simple interest is rupees 85.12

Answered by MrAttitude49
3

Answer:

Hello Arna sis, Kaise ho sis?? :).:)

Similar questions