Math, asked by aryanverma2078, 4 days ago

Find the differential coefficient of cos-¹x² with respect to x​

Answers

Answered by XxitzZBrainlyStarxX
7

Question:-

Find the differential coefficient of with respect to x.

Given:-

  •  \sf \large cos-¹x²

To Find:-

  • Differentiation of w.r.t.x.

Solution:-

 \sf \large Let, y = cos-¹x²

 \sf \large \therefore \frac{dy}{dx}  =  \frac{d}{dx} (cos-¹x²)

 \sf \large  =  -  \frac{1}{ \sqrt{1 - (x {}^{2} ) { }^{2} } } . \frac{d}{dx} (x {}^{2} ) \:  \: ( \frac{d}{dx} .cos {}^{ - 1} (x) =  \frac{ - 1}{ \sqrt{1 - x {}^{2} } } )

 \sf \large  =  \frac{ - 1}{ \sqrt{1 - x {}^{4} } } .2x

 \sf \large  =  \frac{ - 2x}{ \sqrt{1 - x {}^{4} } }

Answer:-

 \sf { \boxed{ \sf \purple{Hence, \:  Differentiation  \: of  \: cos-¹x²  \: = \frac{ - 2x}{ \sqrt{1 - x {}^{4} } }.}}}

Hope you have satisfied.

Answered by PravinRatta
0

Given,

function is cos^{-1} x^{2}

To Find,

the differential coefficient of cos^{-1} x^{2}  w.r.t 'x'.

Solution,

given function is cos^{-1} x^{2}

consider that y = cos^{-1} x^{2}                              (1)

now, differentiating both sides of equation (1) w.r.t 'x'

\frac{d}{dx}y= \frac{d}{dx} cos^{-1} x^{2}

we know that,

\frac{d}{dx} cos^{-1} x^{2}=-\frac{1}{\sqrt{1-x^{2} } }

and

using  [\frac{d}{dx}f(g(x))=f'[g(x)]\frac{d}{dx}g(x)]

we get,

\frac{dy}{dx}=-\frac{1}{\sqrt{1-x^{4} } }\frac{d}{dx}x^{4}

also, we know,

\frac{d}{dx}x^{n} =nx^{n-1}

so using the above result we get,

\frac{dy}{dx}=-\frac{1}{\sqrt{1-x^{4} } }(2x)

\frac{d}{dx}cos^{-1} x^{2} =\frac{-2x}{\sqrt{1-x^{4} } }

Hence the differential coefficient of cos^{-1} x^{2} with respect to x is \frac{-2x}{\sqrt{1-x^{4} } } .

Similar questions