Math, asked by vikas1901, 1 year ago

find the differential coefficient of e^xlogx(2x^2+3)​

Answers

Answered by praneethks
3

Answer:

 \frac{d}{dx}( {e}^{x}  log(x)(2 {x}^{2} + 3)) =  >

 {e}^{x} ( 2{x}^{2}  + 3) \frac{d}{dx}( log(x)  ) +

 {e}^{x} log(x)   \frac{d}{dx} (2 {x}^{2} + 3) +

 log(x) (2 {x}^{2}  + 3) \frac{d}{dx}( {e}^{x}  ) =  >

 {e}^{x}(2 {x}^{2}  + 3)(  \frac{1}{x} ) +  {e}^{x} 4x log(x)  +

 {e}^{x} log(x)  ( 2{x}^{2}  + 3)

 =  >  {e}^{x}  log(x) (2 {x}^{2}  + 3 + 4x) +

 {e}^{x}  (\frac{2 {x}^{2} + 3 }{x} )

Hope it helps you. Mark me as Brainliest if you think i am worthy of it .

Similar questions