CBSE BOARD XII, asked by gowriunni2003, 3 months ago

Find the differential coefficient of tan^-1x with respect to x.
Pls do help guys .. its urgent and don't spam plsss.

Answers

Answered by Anonymous
1

Answer:

Let f(x)=tan  

−1

x and f(x+∂x)=tan  

−1

(x+∂x)

Now,  

dx

d

​  

tan  

−1

x=  

∂x→0

​  

 

∂x

tan  

−1

(x+∂x)−tan  

−1

x

​  

 

Let t=tan  

−1

x⇒tant=x

t+∂t=tan  

−1

(x+∂x)

On putting values

if ∂x→0 and ∂t→0

dx

d

​  

tan  

−1

x=  

∂x→0

​  

 

tan(t+∂t)−

t+∂t−t

​  

 

=  

∂t→0

​  

 

cos(t+∂t)

sin(t+∂t)

​  

−  

cost

​  

 

∂t

​  

 

=  

∂t→0

 

(t+∂t)−(t+∂t)

∂t((t+∂t))

​  

 

=  

∂t→0

​  

 

sin(t+∂t−t)

∂t[(t+∂t)]

​  

 

∂t→0

​  

(  

sin(∂t)

∂t

​  

)(t+∂t)=(1)

=  

sec  

2

t

1

​  

 

=  

1+tan  

2

t

1

​  

=  

1+x  

2

 

1


Anonymous: Hope it helps
Similar questions