Math, asked by pmishi57, 3 months ago

Find the differential equation of (x-h)²+ (y-k)² = a²​

Answers

Answered by shadowsabers03
4

We need to find the differential equation of,

\longrightarrow(x-h)^2+(y-k)^2=a^2\quad\quad\dots(1)

Differentiating the equation wrt x

\longrightarrow2(x-h)+2(y-k)y'=0

\longrightarrow x-h=-(y-k)y'

Putting this value of x-h in (1),

\longrightarrow(y-k)^2(y')^2+(y-k)^2=a^2

\longrightarrow(y-k)^2\left[1+(y')^2\right]=a^2\quad\quad\dots(2)

Differentiating this equation,

\longrightarrow2(y-k)\left[1+(y')^2\right]y'+2(y-k)^2y'y''=0

\longrightarrow y-k=-\dfrac{\left[1+(y')^2\right]}{y''}

Putting this value of y-k in (2),

\longrightarrow\dfrac{\left[1+(y')^2\right]^3}{(y'')^2}=a^2

Differentiating this equation,

\longrightarrow\dfrac{6\left[1+(y')^2\right]^2y'(y'')^3-2\left[1+(y')^2\right]^3y''y'''}{(y'')^4}=0

\longrightarrow\underline{\underline{3y'(y'')^2-(y')^2y'''-y'''=0}}

Answered by diajain01
16

{\boxed{\underline{\tt{ \orange{Required  \: answer:-}}}}}

 \sf{ {[1+  {(\frac{dy}{dX})}^{2}  \brack}^{3}  =  {a}^{2}  {( \frac{ {d}^{2}y }{d {x}^{2} } )}^{2} }

◉GIVEN:-

 \sf{ {(x - h)}^{2}  +  {(y - k)}^{2}  =  {a}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:\:\:\:\:\:  \: (1)

 \longrightarrow \:  \sf{2(x - h) + 2(y - k) \frac{dy}{dx}  = 0}

 \longrightarrow \sf{(x - h) + (y - k) \frac{dy}{dx}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \: (2)}

Again Differentiating

 \sf{(y - k) =  -  \frac{1 +  { (\frac{dy}{dx} )}^{2} }{ \frac{ {d}^{2}y }{d {x}^{2} } } }

Putting in EQ(2) we get

 \sf{(x - h) =  - (y - k) \frac{dy}{dx} }

\longrightarrow \sf{ \frac{1 +  {  [  (\frac{dy}{dx}) ]  }^{2} \frac{dy}{dx}  } { \frac{ {d}^{2}y }{d {x}^{2} } } }

Putting in EQ(1)we get

 \longrightarrow \sf{ \frac{ {[1 +  { (\frac{dy}{dx} }^{2} )]}^{2}  {( \frac{dy}{dx}) }^{2} }{ {( \frac{ {d}^{2}y }{d {x}^{2} }) }^{2} } } +  \frac{ {[1 +  {( \frac{dy}{dx} )}^{2} ] }^{2} }{ { (\frac{ {d}^{2} y}{d {x}^{2} } }^{2}) }  =  {a}^{2}

 \longrightarrow \sf{ {[1 +  { (\frac{dy}{dx}) }^{2}] }^{2} \: [ { (\frac{dy}{dx}) }^{2} + 1]  =  {a}^{2}  {( \frac{ {d}^{2} y}{d {x}^{2} }) }^{2}  }

   \implies \sf \pink{ {[1 +  {( \frac{dy}{dx}) }^{2} ]}^{3} =  {a}^{2}  {( \frac{ {d}^{2}y }{d {x}^{2} } )}^{2}  }

Similar questions