Math, asked by swartishakya2000, 7 months ago

find the differential equation whose general solution is : y^n =ax^n​

Answers

Answered by rajdheerajcreddy
4

Answer is given in the pic.

Attachments:
Answered by BrainlyPopularman
17

GIVEN :

Equation => yⁿ = axⁿ

TO FIND :

• Differential equation = ?

SOLUTION :

 \\ \bf \implies \:  {y}^{n}  = a {x}^{n} \\

• Now Differentiate with respect to 'x' –

 \\ \bf \implies n({y}^{n - 1}) \dfrac{dy}{dx}=a(n){x}^{n - 1} \\

 \\ \bf \implies{y}^{n - 1}\dfrac{dy}{dx}=a{x}^{n - 1} \\

 \\ \bf \implies\dfrac{dy}{dx}=a \bigg( \dfrac{{x}^{n - 1}}{{y}^{n - 1}} \bigg)\\

• Using given equation –

 \\ \bf \implies \:  {y}^{n}  = a {x}^{n} \\

 \\ \bf \implies a = \dfrac{{y}^{n}}{{x}^{n}} \\

 \\ \bf \implies\dfrac{dy}{dx}=\bigg( \dfrac{{y}^{n}}{{x}^{n}} \bigg) \bigg( \dfrac{{x}^{n - 1}}{{y}^{n - 1}} \bigg)\\

 \\ \bf \implies\dfrac{dy}{dx}=\bigg( \dfrac{{y}^{ \{n - (n - 1) \}}}{{x}^{ \{n - (n - 1) \}}} \bigg) \\

 \\ \bf \implies\dfrac{dy}{dx}=\bigg( \dfrac{{y}^{(n - n+1)}}{{x}^{(n - n  + 1)}} \bigg) \\

 \\ \bf \implies\dfrac{dy}{dx}=\bigg( \dfrac{{y}^{(1)}}{{x}^{(1)}} \bigg) \\

 \\ \large \implies{ \boxed{ \bf\dfrac{dy}{dx}=\dfrac{y}{x}}}\\

Similar questions