Math, asked by agothku, 2 months ago

find the differential equations for formula y'+1/3y=e^xy^4​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \frac{dy}{dx}   +   \frac{1}{3} y =  {e}^{x} y^{4}  \\

  \implies \frac{1}{ {y}^{4} } \frac{dy}{dx}   +   \frac{1}{3 {y}^{3} }  =  {e}^{x}  \\

Let \frac{1}{3 {y}^{3} }  = v \\  \implies -  \frac{1}{ {y}^{4} } \frac{dy}{dx}   =  \frac{dv}{dx}

  \implies  - \frac{dv}{dx}   + v  =  {e}^{x}  \\

  \implies  \frac{dv}{dx}    -  v  =   - {e}^{x}  \\

I.F. =  {e}^{ \int( - 1)dx}  =  {e}^{ - x}  \\

So,

v .{e}^{ - x}  =  \int {e}^{x}. {e}^{ - x}  dx \\

 \implies \: v .{e}^{ - x}  =  \int  dx \\

 \implies \: v .{e}^{ - x}  = x  + C\\

 \implies \:  \frac{1}{3 {y}^{3} } .{e}^{ - x}  = x  + C\\

Similar questions