Math, asked by raosahab809, 3 days ago

find the differentiation​

Attachments:

Answers

Answered by chandan454380
1

Answer:

the answer is

 -  \frac{a}{2 \sqrt[3]{ax + b} }

Step-by-step explanation:

As we know that

 \frac{d}{dx}  \frac{u}{v}  =  \frac{v \frac{d}{dx }u - u \frac{d}{dx} v }{ {v}^{2} }

Also ,

 \frac{d}{dx}  { \sqrt{ax + b} }  =    \frac{d}{dx}  {(ax + b)}^{ \frac{ 1 }{2 }  }  \\  =  \frac{1}{2} \frac{d}{dx}  {(ax + b)}^{ \frac{ 1 }{2 } - 1  }  \\  =  \frac{1}{2}  {(ax + b)}^{ \frac{ -  1 }{2 }   }  \frac{d}{dx}(ax + b) \\  =  \frac{1}{2 \sqrt{ax + b} }  \times( a + 0) \\  = \frac{a}{2 \sqrt{ax + b} }

 \frac{1}{  \sqrt{ax + b}}  =  \frac{\sqrt{ax + b}  \: \frac{d}{dx} 1 -  \: 1\frac{d}{dx} \: \sqrt{ax + b}}{ (\sqrt{ax + b})^{2}  } \\  =  \frac{\sqrt{ax + b} \times 0 \:  - 1 \times  \frac{1}{2 \sqrt{ax + b}  }   \: \frac{d}{dx} (ax + b)}{ax + b}  \\  =  \frac{0 -  \frac{1}{2\sqrt{ax + b}} \: (a + 0) }{ax + b}  \\  =   \frac{   - \frac{ 1}{2\sqrt{ax + b}}a }{ax + b}  \\  =   - \frac{a}{2 \sqrt{ax + b}(ax + b) }  \\  =   - \frac{a}{2 {(ax + b)}^{ \frac{1}{2} }(ax + b)  }   \\  =  -  \frac{a}{2 {(ax + b)}^{ \frac{3}{2} } }  \\  =  -  \frac{a}{2 \sqrt[3]{ax + b} }

Similar questions