Math, asked by sajidaqazi29, 5 months ago

find the differentiation of 2x^5+49x+3x+1/5√x+3/x
with full explanation​

Answers

Answered by BrainlyPopularman
15

GIVEN :

• An equation –

 \\ \implies\bf 2x^5+ 49x + 3x + \dfrac{1}{5 \sqrt{x}} +\dfrac{3}{x} \\

TO FIND :

• Differentiation = ?

SOLUTION :

• Let the function –

 \\ \implies\bf P = 2x^5+ 49x + 3x + \dfrac{1}{5 \sqrt{x}} +\dfrac{3}{x} \\

 \\ \implies\bf P = 2x^5+ (49 + 3)x +  \dfrac{1}{5 {x}^{ \frac{1}{2} } } +\dfrac{3}{x} \\

 \\ \implies\bf P = 2x^5+52x +  \dfrac{{x}^{ -  \frac{1}{2} } }{5} +3 {x}^{ - 1}  \\

• We know that –

 \\ \longrightarrow\bf \pink{\dfrac{d{x}^{n}}{dx} = n {x}^{n - 1}}  \\

• So that –

 \\ \implies\bf  \dfrac{dP}{dx} = \dfrac{d}{dx} \bigg\{ 2x^5+52x +  \dfrac{{x}^{ -  \frac{1}{2} } }{5} +3 {x}^{ - 1} \bigg\} \\

 \\ \implies\bf  \dfrac{dP}{dx} = \dfrac{d}{dx}(2x^5)+\dfrac{d}{dx}(52x) +\dfrac{d}{dx} \bigg(\dfrac{{x}^{ -  \frac{1}{2} } }{5} \bigg)+\dfrac{d}{dx}(3 {x}^{ - 1}) \\

 \\ \implies\bf  \dfrac{dP}{dx} =2 \dfrac{d}{dx}(x^5)+52\dfrac{d}{dx}(x) + \dfrac{1}{5} \dfrac{d}{dx}({x}^{ -  \frac{1}{2} })+3\dfrac{d}{dx}( {x}^{ - 1}) \\

 \\ \implies\bf  \dfrac{dP}{dx} =2(5 {x}^{4})+52+ \dfrac{1}{5} \times  -  \dfrac{1}{2} ({x}^{ -  \frac{1}{2} - 1})+3( - 1)( {x}^{ - 1 - 1}) \\

 \\ \implies\bf  \dfrac{dP}{dx} =10 {x}^{4}+52 - \dfrac{1}{10}({x}^{ -  \frac{3}{2} }) - 3( {x}^{ -2}) \\

 \\ \implies \large \pink{ \boxed{\bf  \dfrac{dP}{dx} =10 {x}^{4}+52 - \dfrac{1}{10x \sqrt{x}}-  \dfrac{3}{ {x}^{2}}}}\\

Answered by NewGeneEinstein
8

Step-by-step explanation:

Given Equation:-

\sf 2x^5+49x+3x+\dfrac {1}{5\sqrt {3}x+\dfrac{3}{x}

To do:-

Find differentiation

Solution:-

Let the function be P

 \\ \qquad {:}\longrightarrow\sf P = 2x^5+ 49x + 3x + \dfrac{1}{5 \sqrt{x}} +\dfrac{3}{x} \\  \\\qquad  \implies\sf P = 2x^5+ (49 + 3)x +  \dfrac{1}{5 {x}^{ \frac{1}{2} } } +\dfrac{3}{x} \\ </p><p></p><p>\\ \qquad {:}\implies\sf P = 2x^5+52x +  \dfrac{{x}^{ -  \frac{1}{2} } }{5} +3 {x}^{ - 1}  \\

As we know that

 \boxed { \rightarrowtail\sf {\dfrac{d{x}^{n}}{dx} = n {x}^{n - 1}} } \\

 \\\qquad {:} \implies\sf  \dfrac{dP}{dx} = \dfrac{d}{dx} \bigg\{ 2x^5+52x +  \dfrac{{x}^{ -  \frac{1}{2} } }{5} +3 {x}^{ - 1} \bigg\} \\

 \\\qquad {:} \implies\sf  \dfrac{dP}{dx} = \dfrac{d}{dx}(2x^5)+\dfrac{d}{dx}(52x) +\dfrac{d}{dx} \bigg(\dfrac{{x}^{ -  \frac{1}{2} } }{5} \bigg)+\dfrac{d}{dx}(3 {x}^{ - 1}) \\

 \\\qquad {:} \implies\sf  \dfrac{dP}{dx} =2 \dfrac{d}{dx}(x^5)+52\dfrac{d}{dx}(x) + \dfrac{1}{5} \dfrac{d}{dx}({x}^{ -  \frac{1}{2} })+3\dfrac{d}{dx}( {x}^{ - 1}) \\

 \\\qquad {:} \implies\sf  \dfrac{dP}{dx} =2(5 {x}^{4})+52+ \dfrac{1}{5} \times  -  \dfrac{1}{2} ({x}^{ -  \frac{1}{2} - 1})+3( - 1)( {x}^{ - 1 - 1}) \\

 \\\qquad {:} \implies\sf  \dfrac{dP}{dx} =10 {x}^{4}+52 - \dfrac{1}{10}({x}^{ -  \frac{3}{2} }) - 3( {x}^{ -2}) \\

 \\ \implies\red {\bigstar} \LARGE{ \boxed{\sf  \dfrac{dP}{dx} =10 {x}^{4}+52 - \dfrac{1}{10x \sqrt{x}}-  \dfrac{3}{ {x}^{2}}}}\red {\bigstar}

Similar questions