Physics, asked by sanaghosh1295, 11 months ago

Find the differentiation of 6x³-9x+4

Answers

Answered by Rohit18Bhadauria
9

To Find:

Differentiation of 6x³-9x+4

Solution:

We know that,

\longrightarrow\bf{\dfrac{d}{dx}(x^{n})=nx^{n-1}}

\longrightarrow\bf{\dfrac{d}{dx}(constant)=0}

Let y= 6x³-9x+4

So, on differentiating y w.r.t. x, we get

\longrightarrow\mathrm{\dfrac{dy}{dx}=6(3x^{2})-9(1)+0}

\longrightarrow\mathrm{\dfrac{dy}{dx}=18x^{2}-9}

\longrightarrow\mathrm{\pink{\dfrac{dy}{dx}=9(2x^{2}-1)}}

Hence, the differentiation of 6x³-9x+4 is 18x²-9 or 9(2x²-1).

More Formulae on differentiation:

\longrightarrow\bf{\dfrac{d}{dx}(sinx)=cosx}

\longrightarrow\bf{\dfrac{d}{dx}(cosx)=-sinx}

\longrightarrow\bf{\dfrac{d}{dx}(logx)=\dfrac{1}{x}}

\longrightarrow\bf{\dfrac{d}{dx}(tanx)=sec^{2}x}

\longrightarrow\bf{\dfrac{d}{dx}(cotx)=-cosec^{2}x}

\longrightarrow\bf{\dfrac{d}{dx}(secx)=secxtanx}

\longrightarrow\bf{\dfrac{d}{dx}(cosecx)=-cosecxcotx}

\longrightarrow\bf{\dfrac{d}{dx}(e^{x})=e^{x}}

\longrightarrow\bf{\dfrac{d}{dx}(a^{x})=a^{x}loga}

Similar questions