Math, asked by Anonymous, 2 days ago

Find the differentiation of infinite radicals,
  \dfrac{d}{dx}  \left ( \sqrt{x +  \sqrt{x +  \sqrt{x +  \sqrt{... \infty } } } } \right)

Answers

Answered by mathdude500
25

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: \sqrt{x +  \sqrt{x +  \sqrt{x +  -  -  -  \infty } } }

Let assume that

\rm :\longmapsto\: y = \sqrt{x +  \sqrt{x +  \sqrt{x +  -  -  -  \infty } } }

On squaring both sides, we get

\rm :\longmapsto\: {y}^{2} = x +  \sqrt{x +  \sqrt{x +  \sqrt{x +  -  -  -  \infty } } }

can be rewritten as

\rm :\longmapsto\: {y}^{2} = x + y

\rm :\longmapsto\: {y}^{2} - y = x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}({y}^{2} - y) =\dfrac{d}{dx} x \:

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }}

So, using this, we get

\rm :\longmapsto\:2y\dfrac{dy}{dx} - \dfrac{dy}{dx} = 1

\rm :\longmapsto\:(2y - 1)\dfrac{dy}{dx}  = 1

 \red{\rm \implies\:\boxed{ \tt{ \:  \: \dfrac{dy}{dx} =  \frac{1}{2y - 1} \:  \: }}}

Short Cut Method

If

\rm :\longmapsto\:y =  \sqrt{f(x) +  \sqrt{f(x) +  \sqrt{f(x) +  -  -  -  \infty } } }

then

 \red{\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx} =  \frac{f'(x)}{2y - 1} \: }}}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by TrustedAnswerer19
38

{\boxed{\boxed{\begin{array}{cc}\bf \:  \to \:at \: first \:  \: let \:  \\  \\  \rm \: y =  \sqrt{x +  \sqrt{x +  \sqrt{x +  \sqrt{ . \: . \: . \:  \infty} } } } \:  \:  \:  -  -  - (1)  \\  \\  \rm \implies \:  {y}^{2} = x +  \sqrt{x +  \sqrt{x +  \sqrt{. \: . \: . \:  \infty} } }    \\  \\  \rm \implies \:  {y}^{2}  = x  +  \sqrt{x +  \sqrt{x +  \sqrt{x +  \sqrt{... \infty} } } } \\  \\  \rm \implies \:  {y}^{2}  = x + y  \:  \:  \:  \{ \sf \: by \: eqn.(1) \} \\  \\  \sf \: differentiate \: w.r.t \:  \: \rm \:  x \\  \\ \rm \: \frac{d}{dx}  {y}^{2}  =  \frac{d}{dx}(x + y) \\  \\  \rm \implies \: 2y. \frac{dy}{dx}   =  \frac{d}{dx} x +  \frac{d}{dx} \: y \\  \\  \rm \implies \: 2y. \frac{dy}{dx}   = 1 +  \frac{dy}{dx } \\  \\ \rm \implies \: 2y. \frac{dy}{dx}   -  \frac{dy}{dx}  = 1 \\ \\    \rm \implies \: (2y - 1). \frac{dy}{dx}   = 1 \\  \\  \rm \implies \:  \frac{dy}{dx} =  \frac{1}{2y - 1}  \\  \\  \\   \orange{ \boxed{\therefore \rm \:  \frac{d}{dx}  \left ( \sqrt{x +  \sqrt{x +  \sqrt{x +  \sqrt{... \infty} } } }  \:  \right ) =  \frac{1}{2y - 1} }}\end{array}}}}

Similar questions