Math, asked by bhumikajindal770, 7 hours ago

Find the differentiation of the following function

tan3xtan2xtanx with respect to x.

Don’t use product rule and logarithms

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: \: tan3x \: tan2x \: tanx

Let we first represent this product of terms in form of addition or subtraction with the help of Trigonometric functions.

We know,

\rm :\longmapsto\:3x = 2x + x

So,

\rm :\longmapsto\:tan3x = tan(2x + x)

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}}}

So, using this identity, we get

\rm :\longmapsto\:tan3x = \dfrac{tan2x + tanx}{1 - tan2x \: tanx}

\rm :\longmapsto\:tan3x - tan3xtan2xtanx = tan2x + tanx

\rm\implies \:tan3xtan2xtanx = tan3x - tan2x - tanx

So,

Let assume that

\rm :\longmapsto\:y = tan3xtan2xtanx

can be rewritten as

\rm :\longmapsto\:y = tan3x - tan2x - tanx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}( tan3x - tan2x - tanx)

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}tanx = {sec}^{2}x \: }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sec}^{2}3x\dfrac{d}{dx}3x - {sec}^{2}2x\dfrac{d}{dx}2x - {sec}^{2}x

\rm :\longmapsto\:\dfrac{dy}{dx} =  3{sec}^{2}3x - 2{sec}^{2}2x - {sec}^{2}x

Hence,

\rm\implies \:\boxed{\tt{ \:\dfrac{dy}{dx} =  3{sec}^{2}3x - 2{sec}^{2}2x - {sec}^{2}x}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by talpadadilip417
2

Step-by-step explanation:

Answer:

\boxed{\huge{\mathbb\pink{REFERR \:TO\: THE\:\: ATTACHMENT }}}

Step-by-step explanation:

hope it help you.

thanks

Attachments:
Similar questions