Math, asked by beastop321, 2 months ago

find the digonal of rectangle whose lenth is 35cm and breadth is 18 cm​

Answers

Answered by aditiverma1605
0

√(35²+18²)

√(1225+324)

√1549

39.35cm

please mark me brainliest

Answered by SachinGupta01
7

  \sf \underline{\large{Given -  }}

 \sf \dashrightarrow \: Length  \: of \:  rectangle = 35  \: cm

 \sf \dashrightarrow \: Breadth  \: of \:  rectangle = 18  \: cm

  \sf \underline{\large{To \:  find  -  }}

 \sf \dashrightarrow \: Diagonal \:  of  \: rectangle = \:  ?

  \sf \underline{\large{Solution   -  }}

 \sf \dashrightarrow \:   {\boxed{ \sf Diagonal \:  of  \: rectangle = \:   \sqrt{(Length )^2 + (Breadth)^2}  }}

 \sf Substitute \:  the  \: values,

 \sf \dashrightarrow \:    \sf Diagonal  = \:   \sqrt{(Length )^2 + (Breadth)^2}

 \sf \dashrightarrow \:    \sf Diagonal  = \:   \sqrt{(35 )^2 + (18)^2}

 \sf \dashrightarrow \:    \sf Diagonal  = \:   \sqrt{1225 + 324}

 \sf \dashrightarrow \:    \sf Diagonal  = \:   \sqrt{1549}

 \sf \dashrightarrow \:    \sf Diagonal  = \:   39.35 \: cm

 \bf{Hence},

 \sf \dashrightarrow \:  \boxed{   \sf Diagonal   \:of \:  rectangle  = \:   39.35 \: cm}

━━━━━━━━━━━━━━━━━━━━━━━━

 \bf Some \:  other \:  formulae :

 \sf \dashrightarrow \:  Area \:  of \:  rectangle = length  \times  Breadth

 \sf \dashrightarrow \:  Length \:  of  \: rectangle =  \dfrac{Area}{Breadth}

 \sf \dashrightarrow \:  Breadth \:  of  \: rectangle =  \dfrac{Area}{length}

 \sf \dashrightarrow \:  Perimeter \:  of  \: rectangle = 2(Length + Breadth)

━━━━━━━━━━━━━━━━━━━━━━━━

 \bf Three  \: properties  \: of \:  rectangle :

 \sf (1). \:All \:the \:angle \:of \:a\: rectangle \: are \:90\degree.

 \sf(2). \:Opposite \:side \:of\: a\: rectangle\: are \:equal\: and \: parallel.

 \sf(3). \:Diagonal \:of\: a \:rectangle\: bisect \:each\:other.

Similar questions