Physics, asked by shivansh9852, 1 year ago

Find the dimensions of Planck's constant h from the equation E = hv where E is the energy and v is the frequency.

Answers

Answered by saisonwane666
0

Answer:ML^2T^-2

Explanation:

Answered by bhuvna789456
6

The dimensions of Planck's constant h from the equation E = hv where E is the energy and v is the frequency is M L^{2} T^{-1}.

Explanation:

Given Equation, E = h × v

                          h=\frac{E}{v}

Where ,

           E = is the energy  

           v = is the frequency

Let us finding the Dimension of the Energy and Frequency  :

                   F=\frac{1}{T}=T^{-1}

                    F = Frequency  

                    T = Time period  

                    E = F× D

    ENERGY = FORCE × DISPLACEMENT

                 E = Energy

                 F = Force  

                 D = Displacement

FORCE = MASS × ACCELERATION  

  ENERGY = Mass × Acceleration × Length

                       =\text { Mass } \times \frac{\text {velocity}}{\text {time}} \times \text { Length. } (Acceleration = velocity / time)

                       =M L T^{-2} \times L

                       =M L^{2} T^{-2}

Dimension of Plant Constant (h)

                       = Dimension of Energy/Dimension of Frequency

                       =\left(M L^{2} T^{-2}\right) /\left(T^{-1}\right)

                       =M L^{2} T^{-1}

Thus, the dimensions of Plancl's constant is M L^{2} T^{-1}.

Similar questions