Math, asked by shridhan44, 11 months ago

find the directional derivative of A=4xz^3-3x^2y^2z at (2,-1,2) along 2i-3j+6k​

Answers

Answered by Swarup1998
12

Directional derivative

Solution. The given function is

\quad\quad A=4xz^{3}-3x^{2}y^{2}z

The unit vector along (2\hat{i}-3\hat{j}+6\hat{k}) is

\quad\quad\hat{a}=\frac{2\hat{i}-3\hat{j}+6\hat{k}}{\sqrt{2^{2}+(-3)^{2}+6^{2}}}

\quad\quad\quad=\frac{2\hat{i}-3\hat{j}+6\hat{k}}{\sqrt{4+9+36}}

\quad\quad\quad=\frac{2\hat{i}-3\hat{j}+6\hat{k}}{\sqrt{49}}

\quad\quad\quad=\frac{1}{7}(2\hat{i}-3\hat{j}+6\hat{k})

\therefore grad(A)=\hat{i}\frac{\partial}{\partial x}(4xz^{3}-3x^{2}y^{2}z)\\ \quad+\hat{j}\frac{\partial}{\partial y}(4xz^{3}-3x^{2}y^{2}z)\\ \quad+\hat{k}\frac{\partial}{\partial z}(4xz^{3}-3x^{2}y^{2}z)

=(4z^{3}-6xy^{2}z)\hat{i}-6x^{2}yz\hat{j}\\ \quad+(12xz^{2}-3x^{2}y^{2})\hat{k}

Now, \frac{dA}{ds}

=grad(A).\hat{a}

=\{(4z^{3}-6xy^{2}z)\hat{i}-6x^{2}yz\hat{j}\\ \quad+(12xz^{2}-3x^{2}y^{2})\hat{k}\}.\frac{1}{7}(2\hat{i}-3\hat{j}+6\hat{k})

=\frac{1}{7}(8y^{3}-12xy^{2}z+18x^{2}yz+72xz^{2}-18x^{2}y^{2}) at the point (x,\:y,\:z)

=\frac{1}{7}(304) at the point (2,\:-1,\:2)

Answer:

Required directional derivative is \frac{304}{7}.

Answered by nehanawaz
0

Answer:

Step-by-step explanation:

we know directional derivative (DD)=delphi.n^

so by solving Delphi value and n vector we substitute in the formula. Good luck

Attachments:
Similar questions