Math, asked by YesaswiniThota, 6 months ago

find the directional derivative of f =xy^2+yz^2+zx^2 the tangent to the curve x =t, y=t^2,z=t^3 at the point (1,1,1)​

Answers

Answered by ayushpatelap
5

Answer:

18/root 14

Step-by-step explanation:

Attachments:
Answered by HrishikeshSangha
2

Given:

f\left(x, y, z\right)=x y^{2}+y z^{2}+z x^{2} the tangent to the curve x =t, y=t^2,z=t^3 at the point (1,1,1).

To find:

Directional derivative

Solution:

\Rightarrow f\left(x, y, z\right)=x y^{2}+y z^{2}+z x^{2}$\\point $(1,1,1)$\\$fx{=y^{2}+2 x z \quad \Rightarrow f x(1,1,1)=3$\\$fy=2y x+z^{2} \Rightarrow fy(1,1,1)=3$\\$fz=2 z y+x^{2} \Rightarrow fz(1,1,1)=3$\\Then\\$\bar{u}=\left(\frac{\partial x}{\partial t} \hat{i}+\frac{\partial y}{\partial t} \\\\\hat{j}+\frac{\partial z}{\partial t} \hat{k}\right)$\\$=\left(1 \hat{i}+2 t \hat{j}+3 t^{2} \hat{k}\right)$\\but $t=1$\\$=(1,2,3)$\\$D_{\bar{u}}{ }^{f}=(3,3,3) \frac{(1,2,3)}{\sqrt{14}}$\\

=\frac{18}{\sqrt{14} }

Therefore, the directional derivative is \frac{18}{\sqrt{14} }.

Similar questions