Math, asked by shinikaviraj, 1 month ago

Find the discriminant of the following quadratic equation 3x² - 6x + 2 = 0​

Answers

Answered by Anonymous
22

Answer:

Given :-

  • 3x² - 6x + 2 = 0

To Find :-

  • What is the discriminate of the following quadratic equation.

Formula Used :-

\clubsuit Discriminant Formula :

\mapsto \sf\boxed{\bold{\pink{Discriminant\: (D) =\: b^2 - 4ac}}}\\

Solution :-

Given Equation :

\bigstar\: \: \sf\bold{\purple{3x^2 - 6x + 2 =\: 0}}

where,

  • a = 3
  • b = - 6
  • c = 2

According to the question by using the formula we get,

\longrightarrow \sf Discriminant\: (D) =\: (- 6)^2 - 4(3)(2)

\longrightarrow \sf Discriminant\: (D) =\: (- 6)(- 6) - 4 \times 3 \times 2

\longrightarrow\sf Discriminant\: (D) =\: 36 - 12 \times 2\\

\longrightarrow \sf Discriminant\: (D) =\: 36 - 24

\longrightarrow \sf\bold{\red{Discriminant\: (D) =\: 12 > 0}}

\therefore The discriminant is 12.

The nature of the quadratic equation is real and unequal.

Answered by yashnikhare962
2

Step-by-step explanation:

3x² - 6x + 2 = 0

ax² + bx + c = 0-----------(1)

The given equation comparing to equation (1)

a = 3, b = -6 & c = 2

∆ = b² - 4ac

= (-6)² - 4×3×2

= 36 - 24

=12

Similar questions