Math, asked by kruthinbhai, 11 months ago

Find the discriminant of the quadratic equation
2x + x + 4 = 0, hence
find the nature of its roots.
find the nature of its roots​

Answers

Answered by THEYODA
29

\textbf{\underline {\underline {Solution:}}}

d =  {b}^{2} - 4ac \\  \:  \:  {1}^{2} - 4 \times 2 \times 4 \\  D= - 32

\textbf{\underline{D<0 Then there is no Roots }}

Answered by Anonymous
420

\huge{\mathfrak{\underline{\underline \red{ Correct \: Question-}}}}

•find the discriminant and nature of given equation – \large\sf\ 2x^2 \: + \: x \: + \: 4

⠀⠀

\huge{\mathfrak{\underline{\underline \red{Answer-}}}}

-

A quadratic equation \sf\ 2x^{2} \: + \:  x \: + \: 4

-

⠀⠀• The discriminant

⠀⠀• Nature of roots

-

\large\sf\ Formula \:  to \:  find \: discriminant \: -

{\boxed{\sf\orange{D \: = \: b^{2} \: - \: 4ac}}}

From equation ;

⠀⠀⠀• a → 2

⠀⠀⠀• b → 1

⠀⠀⠀• c → 4

Now,consitute it accordingly ;

\large\to\sf\ D \: = \: (1)^2 \: - \: 4 \times\ 2 \times\ 4 \\ \\ \large\to\sf\ D \: = \: 1 \: -  32  \\ \\ \large\to\sf\ D \: = \: -31

⠀⠀⠀

\large\bullet\sf\ Value \: of \: D \: = \: -31  \\ \\ \large\bullet\sf\ Nature \: of \: roots \: = \: Non-real \: roots (As value of D is smaller than 0)

⠀⠀⠀⠀

Similar questions