Math, asked by ATK2855, 10 months ago

find the discriminant of the quadratic equation 2x2-3x+1=0.And determine the nature of the root​

Answers

Answered by Anonymous
8

Given that ,

The quadratic eq is 2x² - 3x + 1 = 0

Here ,

a = 2

b = -3

c = 1

As we know that ,

  \sf \star \:  \: Two  \: unequal \:  real \: roots  \: ,  \: if  \: {(b)}^{2}- 4ac &gt; 0  \\  \\  \sf \star \:  \:Two  \: equal \:  real \:  roots  \: ,  \: if  \: {(b)}^{2} - 4ac = 0  \\  \\  \sf \star \:  \:</p><p>Two  \: unequal \:  imaginary \:  roots \:  , \:  if \:  {(b)}^{2} - 4ac &lt;  0

Thus ,

 \sf \Rightarrow  {(3)}^{2} - 4 × 2 × 1 \\  \\  \sf \Rightarrow </p><p>9 - 8 \\  \\  \sf \Rightarrow </p><p>1 &gt; 0

 \therefore   \underline{\sf \bold{The \:  given  \: equation \:  has \:  two \:  unequal  \: real \:  roots }}

Answered by ravindraware67
15

MARK AS BRAINLIEST.

real and unequal

Step-by-step explanation:

2x^2-3x +1 = o

2x^2-2x -x +1 =o

2x(x-1)- (x-1) =o

(2x-1) (x-1) =0

x=1 or x=1/2

roots are positive

Similar questions