Math, asked by sharan7617, 1 month ago

Find the discriminant of the quadratic equation 2x²-6x+3=0 and hence write the
nature of roots.​

Answers

Answered by riya10124
13

Heya

hope it helps you....

Attachments:
Answered by BrainlyRish
6

⠀⠀⠀⠀⠀★ QUADRATIC EQUATIONS —

\underline{\bf{\dag} \:\mathfrak{Discriminant \; Formula\: :}}

\star\boxed {\pink{\sf{ Discriminant = b^2 - 4ac }}}\\\\

⠀⠀

⠀⠀⠀⠀⠀ Quadratic equation = 2x² - 6x + 3 = 0

where,

  • a is coefficient of x² = 2

  • b is coefficient of x = -6

  • c is constant term = 3

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

:\implies \sf{ D = (-6)^2 - 4(2) \times 3 }\\\\:\implies \sf{ D = 36 - 4(2) \times 3 }\\\\:\implies \sf{ D = 36 - 8 \times 3 }\\\\:\implies \sf{ D = 36 - 24 }\\\\\underline {\boxed{\pink{ \mathrm {  Discriminant \:or\:D\:= 12\: }}}}\:\bf{\bigstar}\\

\rule{100px}{.3ex}

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Finding\:Nature\;of\;Roots\: :}}⠀⠀

  • D (Discriminant) = 12

If,

  • D > 0 (roots are unequal and real)

  • D = 0 (roots are real and equal)

  • D < 0 (roots are unequal and Imaginary)

\rule{250px}{.3ex}

Therefore,

As , We can see that ,

  • 12 > 0 [ D > 0 (roots are unequal and real) ]

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  The\:roots\:are\:\bf{\:unequal \:and\: real }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀

⠀⠀

Similar questions