Math, asked by asim9897577255, 10 months ago

Find the discriminants of the following quadratic equation (2x+1) whole square-(x-1)whole square=(x+2) whole square. The answer is 9

Answers

Answered by amitkumar44481
2

SolutioN :

We have, Equation.

 \tt \dagger \:  \:  \:  \:  \:{ (2x + 1)}^{2}  - {(x - 1)}^{2}  =  {(x + 2)}^{2}

 \tt  : \implies{ (2x + 1)}^{2}  - {(x - 1)}^{2}  =  {(x + 2)}^{2}

 \tt  : \implies 4 {x}^{2} + 1 + 4x -( {x}^{2} + 1 - 2x)   =   {x}^{2}  + 4 + 4x

 \tt  : \implies 4 {x}^{2} + 1 + 4x - {x}^{2}  -  1  +  2x =   {x}^{2}  + 4 + 4x

 \tt  : \implies 4 {x}^{2} + 2x   =  2 {x}^{2}  + 4

 \tt  : \implies 4 {x}^{2} + 2x  -  2 {x}^{2}   - 4 = 0.

 \tt  : \implies 2 {x}^{2} + 2x   - 4 = 0.

  • D Discriminate

→ D = b² - 4ac.

→ D = ( 2 )² - 4( 2 )(- 4 )

→ D = 4 + 16 * 2.

→ D = 36.

\rule{90}2

★ MorE.

Now, Let's Find Zeros.

→ 2x² + 2x - 4 = 0.

\begin{array}{r | l} 2 & 16 \\ \cline{2-2} 2 & 8 \\ \cline{2-2} 2 & 4 \\ \cline{2-2} 2 & 2 \\ \cline{2-2}    & 1 \end{array}

→ 2x² + 4x - 2x - 4 = 0.

→ 2x( x + 2 ) - 2( x + 2 ) = 0.

→ ( 2x - 2 )( x + 2 ) = 0.

Either,

→ x + 2 = 0.

→ x = - 2.

Or,

→ 2x - 2 = 0.

→ x = 1.

Therefore, the D is 36.

Similar questions