Math, asked by angelicarose7841, 1 year ago

Find the displacement of a particle after 10 seconds starting from rest with a uniform acceleration of 2m/§

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt \therefore Displacement \: after \: 10 \: sec \: is \: 100 \: m}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}}  \\  \tt: \implies Time(t) = 10 \: sec \\  \\  \tt: \implies Acceleration(a) = 2 { \: m/s}^{2}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Displacement(s) =?

• According to given question :

 \tt \circ \: Initial \: velocity = 0 \: m/s\\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies s = ut +  \frac{1}{2}  {at}^{2}  \\  \\ \tt:  \implies s =0 \times 10 +  \frac{1}{2}  \times 2 \times  {10}^{2}  \\  \\ \tt:  \implies s =0 +  {10}^{2}  \\  \\  \green{\tt:  \implies s =100 \: m} \\  \\   \green{\tt \therefore Displacement \: after \: 10 \: sec \: is \: 100 \: m}

Answered by Anonymous
1

Given ,

Time (t) = 10 sec

Initial velocity (u) = 0 m/s

Acceleration (a) = 2 m/s²

We know that ,

The Newton's second equation of motion is given by

 \boxed{ \sf{S = ut +  \frac{1}{2} a {(t)}^{2} }}

Thus ,

S = 0(10) + 1/2 × 2 × (10)²

S = (10)²

S = 100 m

 \sf \therefore \underline{The \:  displacement \:  of \:   particle \:  is  \: 100  \: m}

Similar questions