Math, asked by aassiya743454, 1 year ago

Find the distance ( a cos alpha , a sin alpha ) and (a cos beta , asin beta)

Answers

Answered by mysticd
6

 Let \: A(x_{1} , y_{1}) = ( a cos \alpha , a sin \alpha ) \: and \\ B(x_{2} , y_{2}) = ( a cos \beta , a sin \beta )

 \underline { \blue { By \: Distance \: Formula : }}

 \boxed { \pink { AB = \sqrt{ (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}} }}

 AB = \sqrt{ ( a cos \beta - a cos \alpha )^{2} + ( a sin \beta - a sin \alpha )^{2} }

 \implies AB = \sqrt{ a^{2} ( cos \beta - cos \alpha )^{2} + a^{2} ( sin \beta - sin \alpha )^{2} }

 \implies AB =a \sqrt{  ( cos \beta - cos \alpha )^{2} +  ( sin \beta - sin \alpha )^{2} }

 \implies AB =a \sqrt{  cos^{2} \beta + cos^{2}  \alpha -2 cos\alpha cos \beta  +  sin^{2}\beta + sin^{2} \alpha - 2 sin \alpha sin \beta }

 \implies AB =a \sqrt{  (cos^{2} \beta + sin^{2}  \beta) -2( cos\alpha cos \beta + sin \alpha sin \beta)+ (cos^{2}\alpha + sin^{2} \alpha)  }

 \implies AB =a \sqrt{  1 -2( cos\alpha cos \beta + sin \alpha sin \beta)+ 1 }

 \implies AB =a \sqrt{  2 -2cos(\alpha - \beta )}

 \implies AB =a \sqrt{  2[1 -cos(\alpha - \beta )]}

Therefore.,

 \red { Distance }\green {= a \sqrt{  2[1 -cos(\alpha - \beta )]}}

•••♪

Similar questions