Math, asked by gokuldhulipalla7, 15 days ago

find the distance between (3,0) and (-5,0)​

Answers

Answered by TrustedAnswerer19
48

\red{ \boxed{\boxed{\begin{array}{cc}  \leadsto \bf \: Given \::  \\  \bf \to two \: points \: are \:  \: (3,0) \:  \: and \: ( -5,0) \\  \\  \sf \to \: we \: have \: to \: find \: distance(d) \: between \: them\end{array}}}}

\pink{ \boxed{\boxed{\begin{array}{cc}  \underline{ \sf \downarrow \: Formula  \downarrow} \\  \\  \rm \to \: if \: (x_1,y_1) \:  \: and \:  \: (x_2,y_2) \: are \: two \: points \:  \\  \\  \rm \: then \: distance \: between \: them \:  : \\  \\   \blue{ \boxed{\bf \: d =  \sqrt{ {(x_1 - x_2)}^{2}  +  {(y_1 - y_2)}^{2} }}} \\  \\   \end{array}}}}

According to the question,

 \bf \: x_ 1 = 3 \\  \bf \: x_2 =   -5 \\  \bf \:  y_1 = 0\\  \bf \: y_ 2= 0

 \text{So  \: distance \:  between \:  them   \:  :} \\  \\  \orange{ \boxed{\boxed{\begin{array}{cc} \\  \bf \: d =  \sqrt{ { \{3-  ( - 5)} \}^{2} +  {(0-0)}^{2}  }  \\  \\   =  \sqrt{ {(3 + 5)}^{2}  + 0 } \\  \\  =  \sqrt{ {8}^{2} } \\  \\  = 8 \sf \: unit  \end{array}}}}

Similar questions