Math, asked by vamshikrishna394, 10 months ago

Find the distance between (a cos theta,0) and (0,a sin theta).​

Answers

Answered by Anonymous
26

Answer :-

Distance between ( a cos θ, 0 ) and ( 0, sin θ ) is 'a' units.

Explanation :-

Let A( a cos θ, 0 ) and B( 0, a sin θ ) be the given points.

 \boxed{ \boxed{ \textsf{Distance between two points ( d )} =  \sf \sqrt{( {x_2 - x_1) }^{2}  +  { {(y_2 - y_1)  }}^{2} } }} \\  \\  \\

 \rm \implies AB =  \sqrt{ {(0 - acos  \theta)^{2}  +  {(asin \theta - 0)}^{2}  }} \\  \\  \\

 \rm \implies AB =  \sqrt{ {( - acos  \theta)^{2}  +  {(asin \theta) }^{2}  }} \\  \\  \\

 \rm \implies AB =  \sqrt{ {( - a)^{2} cos^{2}   \theta  +   {a}^{2} sin^{2}  \theta }} \\  \\  \\

 \rm \implies AB =  \sqrt{ {a^{2} cos^{2}   \theta  +   {a}^{2} sin^{2}  \theta }} \\  \\  \\

 \rm \implies AB =  \sqrt{ {a^{2}( cos^{2}   \theta  +   sin^{2}  \theta )}} \\  \\  \\

 \rm \implies AB =  \sqrt{ {a^{2}(1)}} \\  \\  \\

 \boxed{ \boxed{ \sf \because cos^{2}  \theta + sin^{2}  \theta = 1}} \\  \\  \\  \\

 \rm \implies AB =  \sqrt{ {a^{2}}} \\  \\  \\

 \rm \implies AB = a \ \ units \\  \\  \\

Hence, the distance between ( a cos θ, 0 ) and ( 0, sin θ ) is 'a' units.

Answered by Anonymous
10

Solution

Let the given points be P(a cos∅,0) and Q(0,a sin∅)

To find

Length of PQ

Using Distance Formula,

_______________________

PQ = √( - a cos∅)² + (asin∅)²

___________________

→ PQ = √ a²cos²∅ + a²sin²∅

__________________

→ PQ = √a²(sin²∅ + cos²∅)

But sin²∅ + cos²∅ = 1

→ PQ = √a²

PQ = a units

Thus,the distance between P and Q is "a" units

Similar questions