Find the distance between (acosa,0)(0,asina)
Answers
distance between two point A(x,y) & B(p,q)
is given by
=square root of [(x-p)²+(y-q)²]
=√[(x-p)²+(y-q)²]
Sony this expression
distance between (acosA+bsinA,0) & (0,asinA-bcosA)
is given by
=square root [( acosA+bsinA-0)²+(0-(asinA-bcosA))²]
=square root[( acosA+bsinA)²+(-asinA+bcosA)²]
=square root[( acosA+bsinA)²+(bcosA-asinA)²]
=square root[( a²cos²A+b²sin²A+2abcosAsinA)+(b²cos²A+a²sin²A-2abcosAsinA)]
by grouping terms
=square root[( a²cos²A+a²sin²A+2abcosAsinA)+(b²cos²A+b²sin²A-2abcosAsinA)]
=square root[( a²(cos²A+sin²A)+b²(cos²A+sin²A)]
=square root[( a²*1+b²*1]
=√(a²+b²)
Answer:
D = √(x1-x2)²+(y1-y2)²
D = √(acosa-0)² + (asina²-0)
( since bracket part is in square , we can take any value before , it doesn't make any difference)
D = √(a²cos²a + a² sin²a)
D = √a²(cos²a+sin²a)
D = √a²
D = a (Ans.)