Math, asked by MysteriesGirl, 22 hours ago

Find the distance between each of the following pairs of points.
 \sf \: 1) \: A ( 2 , 3 ) \: , B ( 4 , 1 )

 \sf \: 2) \: P( -5 , 7 ) \: , Q( -1 , 3)

 \sf \: 3) \: T( -3 \: , 6 ) \: , R( 9 \: , -10)

Answers

Answered by MystícPhoeníx
58

Step-by-step explanation:

According to the Question .

We have to calculate the distance between the given pairs of points .

Using Distance Formula

  \\  \star{\boxed{\purple{\bf{Distance \:  =  \sqrt{(x_{2} - x_{1}) {}^{2}  + (y_{2} - y_{1}) {}^{2} }  }}}} \\  \\

 \sf \: 1) \: A ( 2 , 3 ) \: , B ( 4 , 1 )

 \sf \implies \: AB \:  =  \sqrt{(4 - 2) {}^{2} +  (1 - 3)} {}^{2}   \\  \\  \sf \implies \: AB \:  =  \sqrt{( 2) {}^{2} +  (-2) {}^{2} }  \\  \\ \sf \implies \: AB \:  =  \sqrt{ 4 + 4}  \\  \\  \sf \implies \:AB \:  =  \sqrt{8}  \\  \\  \sf \implies \: AB \:  = 2 \sqrt{2}

 \sf \: 2) \: P( -5 , 7 ) \: , Q( -1 , 3)

On substituting the value we get

 \sf \implies \: PQ \:  =  \sqrt{  ({ - 1 + 5})^{2}  +  ({3 - 7})^{2} }  \\  \\  \sf \implies \: PQ \:  =   \sqrt{ {(4)}^{2}  +  {( - 4)}^{2} }  \\  \\ \sf \implies \: PQ \:  =  \sqrt{16 + 16}  \\  \\   \sf \implies \: PQ \:  =  4\sqrt{2}

 \sf \: 3) \: T( -3 \: , 6 ) \: , R( 9 \: , -10)

On substituting the value we get

 \sf \implies \: TR  =  \sqrt{ {(9 + 3)}^{2}  {( - 10  -  6)}^{2} }  \\  \\  \sf \implies \: TR \:  =  \sqrt{ {(12)}^{2}   +  { ( - 16)}^{2} }  \\  \\  \sf \implies \: TR \:   = \sqrt{144 + 256}  \\  \\  \sf \implies \: TR \:  =  \sqrt{400}  \\  \\  \sf \implies \: TR \:  = 20

Answered by Anonymous
57

 \huge  \rm \underline{Solution - 1}

 \\ \star{\boxed{\purple{\bf{Assumption}}}} \\ \\

 \rm Consider \:  W \: ( x_1 ,y_1) \: and  \: X \: ( x_2 ,y_2) \: be \: the \: given \: points \:

 \rm  \therefore \:  x_1  = 2, \: y_1 = 3 \: and \: x_2 = 4 , \: y_2 = 1

 \\ \star{\boxed{\purple{\bf{Now}}}} \\ \\

By using the distance formula ,

 \rm d(W  , X) =   \sqrt{( x_2  - y_1 {)}^{2}  \: + \: {( y_2  - y_1 {)}^{2}  \:  } }

➡ Substitute the given values in above formula and solve

 \rm  \implies   \sqrt{(4  -2 {)}^{2}  \: + \: {( 1 - 3{)}^{2}  \:  } }

 \rm  \implies   \sqrt{(2 {)}^{2}  \: + \: {(  - 2{)}^{2}  \:  } }

 \rm  \implies  \sqrt{4 + 4}  =  \sqrt{8}

 \rm  \therefore \: d(W  , X)  = 2 \sqrt{2} \: units

 \\ \star{\boxed{\purple{\bf{Henceforth}}}} \\ \\

➡ The required distance between the points W and X is 2 √2 units

 \huge  \rm \underline{Solution - 2}

 \\ \star{\boxed{\purple{\bf{Assumption}}}} \\ \\

 \rm Consider \:  M \: ( x_1 ,y_1) \: and  \: N \: ( x_2 ,y_2) \: be \: the \: given \: points \:

 \rm  \therefore \:  x_1  =  - 5, \: y_1 = 7\: and \: x_2 =  - 1, \: y_2 = 3

 \\ \star{\boxed{\purple{\bf{Now}}}} \\ \\

By using the distance formula ,

 \rm d(M, N) =   \sqrt{( x_2  - y_1 {)}^{2}  \: + \: {( y_2  - y_1 {)}^{2}  \:  } }

➡ Substitute the given values in above formula and solve

 \rm  \implies   \sqrt{ [- 1 - ( - {5}) {]}^{2}  \ \: + \: {( 3- 7{)}^{2}  \:  } }

 \rm  \implies   \sqrt{ (- 1 +  {5}{)}^{2}  \ \: + \: {( 3- 7{)}^{2}  \:  } }

 \rm  \implies   \sqrt{  {4}^{2}  \ \: + \: {( - 4{)}^{2}  \:  } }

 \rm  \implies   \sqrt{16 + 16 }

 \rm  \implies   \sqrt{32}

 \rm  \therefore \: d(M , N)  = 4 \sqrt{2} \: units

 \\ \star{\boxed{\purple{\bf{Henceforth}}}} \\ \\

➡ The required distance between the points W and X is 4 √2 units

 \huge  \rm \underline{Solution - 3}

 \\ \star{\boxed{\purple{\bf{Assumption}}}} \\ \\

 \rm Consider \:  P \: ( x_1 ,y_1) \: and  \: Q\: ( x_2 ,y_2) \: be \: the \: given \: points \:

 \rm  \therefore \:  x_1  = -  3, \: y_1 = 6 \: and \: x_2 = 9 , \: y_2 =  - 10

 \\ \star{\boxed{\purple{\bf{Now}}}} \\ \\

By using the distance formula ,

 \rm d(P, Q) =   \sqrt{(   - y_1 {)}^{2}  \: + \: {( y_2  - y_1 {)}^{2}  \:  } }

➡ Substitute the given values in above formula and solve

 \rm  \implies   \sqrt{ [9- ( - {3}) {]}^{2}  \ \: + \: {(  - 10 - 6{)}^{2}  \:  } }

 \rm  \implies (9 + 3 {)}^{2}  + ( - 10 - 6 {)}^{2}

 \rm  \implies  {12}^{2}   + ( - 16 {)}^{2}

 \rm  \implies   \sqrt{144 + 256}

 \rm  \implies  \sqrt{400}

 \rm  \therefore \: d(P  , Q)  = 20 \: units

 \\ \star{\boxed{\purple{\bf{Henceforth}}}} \\ \\

➡ The required distance between the points P and Q is 20 units

Similar questions