Math, asked by rajrajan1974, 2 months ago

find the distance between origin two points using distance formula a(3,8)andb(2,11) B) a(8,-3)andb(0,9) C)a-(5,-7)andb(-1,3) D) a(4,6)andb(6,8) E) a(2,3)andb(5,7) F)a(-6,8)andb(0,0) G) a(a,b)andb(-a,-b)​

Answers

Answered by theerdhaprince
0

Answer:

(A) a(3,8) and b(2,11)

Distance of ab = √(x2 - x1)²+ (y2 - y1)²

= √(2-3)² + (11-8)²

= √(-1)²+ (3)²

= √1+9 = √10

(B) a(8,-3) and b(0,9)

Distance between ab = √(x2 - x1)² + (y1 - y2)²

= √(0-8)² + (9- -3)²

= √(-8)² + (9+3)²

= √64 + 144 = √208 = 4√13

(C) a(5,-7) and b(-1,3)

Distance between ab = √(x2 - x1)² + (y2 - y1)²

= √(-1-5)²+ (3- -7)²

= √(-6)² + (3+7)²

= √36 + 100

= √136 = 2√34

(D) a(4,6) and b(6,8)

Distance between ab = √(x2 - x1)² + (y1 - y2)²

= √(6-4)²+ (8-6)²

= √2² + 2²

= √4 + 4 = √8 = 2√2

(E) a(2,3) and b(5,7)

Distance between ab = √(x2-x1)² + (y2-y1)²

= √(5-2)² + (7-3)²

= √3² + 4²

= √9 + 16 = √25 = 5

(F) a(-6,8) and b(0,0)

Distance between ab = √(x2 - x1)² + (y2 - y1)²

= √(0- -6)² + (0-8)²

= √(6)² + (-8)²

= √36 + 64 = √100 = 10

(G) a(a, b) and b(-a,-b)

Distance between ab = √(x2-x1)² + (y2 - y1)²

= √(-a - a)² + (-b - b)²

= √(-2a)² + (-2b)²

= √4a² + 4b²

= √4(a² + b²)

= 2√a² + b² = 2(a+b)

I hope this will help u. Please add this to brainlist.

Similar questions