find the distance between origin two points using distance formula a(3,8)andb(2,11) B) a(8,-3)andb(0,9) C)a-(5,-7)andb(-1,3) D) a(4,6)andb(6,8) E) a(2,3)andb(5,7) F)a(-6,8)andb(0,0) G) a(a,b)andb(-a,-b)
Answers
Answer:
(A) a(3,8) and b(2,11)
Distance of ab = √(x2 - x1)²+ (y2 - y1)²
= √(2-3)² + (11-8)²
= √(-1)²+ (3)²
= √1+9 = √10
(B) a(8,-3) and b(0,9)
Distance between ab = √(x2 - x1)² + (y1 - y2)²
= √(0-8)² + (9- -3)²
= √(-8)² + (9+3)²
= √64 + 144 = √208 = 4√13
(C) a(5,-7) and b(-1,3)
Distance between ab = √(x2 - x1)² + (y2 - y1)²
= √(-1-5)²+ (3- -7)²
= √(-6)² + (3+7)²
= √36 + 100
= √136 = 2√34
(D) a(4,6) and b(6,8)
Distance between ab = √(x2 - x1)² + (y1 - y2)²
= √(6-4)²+ (8-6)²
= √2² + 2²
= √4 + 4 = √8 = 2√2
(E) a(2,3) and b(5,7)
Distance between ab = √(x2-x1)² + (y2-y1)²
= √(5-2)² + (7-3)²
= √3² + 4²
= √9 + 16 = √25 = 5
(F) a(-6,8) and b(0,0)
Distance between ab = √(x2 - x1)² + (y2 - y1)²
= √(0- -6)² + (0-8)²
= √(6)² + (-8)²
= √36 + 64 = √100 = 10
(G) a(a, b) and b(-a,-b)
Distance between ab = √(x2-x1)² + (y2 - y1)²
= √(-a - a)² + (-b - b)²
= √(-2a)² + (-2b)²
= √4a² + 4b²
= √4(a² + b²)
= 2√a² + b² = 2(a+b)
I hope this will help u. Please add this to brainlist.