Find the distance between parallel lines.
4x + 3y = 11 and 8x + 6y = 15
Answers
Step-by-step explanation:
Given−
theequationsoftwoparallellinesare
4x+3y=11⟹4x+3y−11=0
≡a
1
x+b
1
y+c
1
=0 .......(i)and
8x+6y=15⟹8x+6y−15=0
≡a
2
x+b
2
y+c
2
=0 ........(ii).
Tofindout−
theperpendiculardistancebetweentwoparallellines=?
Solution−
Theperpendiculardistancedbetweentwoparallellines
=differencedbetweentheirdistancesfromtheorigin.
Nowtheperpendiculardistance=pofalineax+by+c=0
fromtheoriginisp=
a
2
+b
2
c
.
From(i)a
1
=4,b
1
=3&c
1
=−11.
∴p
1
=
a
1
2
+b
1
2
c
1
=
∣
∣
∣
∣
∣
4
2
+3
2
−11
∣
∣
∣
∣
∣
units=
5
11
units.
Again,from(ii),a
2
=8,b
2
=6&c
1
=−15.
∴p
2
=
a
2
2
+b
2
2
c
1
=
∣
∣
∣
∣
∣
8
2
+6
2
−15
∣
∣
∣
∣
∣
units=
10
15
units.
Sod=∣p
1
−p
2
∣=
∣
∣
∣
∣
∣
5
11
−
10
15
∣
∣
∣
∣
∣
units=
10
7
units.
∴Thedistancebetweenthegivenlines=
10
7
units.
question ☟☟
- Find the distance between parallel lines.
4x + 3y = 11 and 8x + 6y = 15
solution☟☟
Given lines are 4x + 3y = 11 and 4x + 3y = 15/2
Distane between two parallel lines
|c₁ - c₂ / √a² + b²|
= | 11 - / √16 + 9 |
= | 7 / 2 × 5 |
=7/10