Math, asked by abhinash7816, 9 months ago

Find the distance between the following pair of points:
(0, 0), (- 5, 12)

Answers

Answered by Anonymous
1

\Large{\underline{\underline{\bf{Solution :}}}}

We know that,

\Large{\implies{\boxed{\boxed{\sf{Distanve = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}}}}}

Where,

  • x1 = 0
  • x2 = -5
  • y1 = 0
  • y2 = 12

_____________[Put Values]

\sf{→ Distance = \sqrt{(-5 - 0)^2 + (12 - 0)^2}} \\ \\ \sf{→ Distance = \sqrt{(-5 )^2 + (12 )^2}} \\ \\ \sf{→ Distance = \sqrt{25 + 144}} \\ \\ \sf{→ Distance = \sqrt{169}} \\ \\ \sf{→ Distance = (\sqrt{13})^2} \\ \\ \sf{→ Distance = 13} \\ \\ \Large{\implies{\boxed{\boxed{\sf{Distance = 13}}}}}

Answered by Anonymous
30

  \huge \: \green{ \boxed{ \pink{ \purple{ \mathfrak{\bigstar{answer ♡}}}}}}

 \huge{ \green{ \ddot{ \smile}}}

_____________________________________________

 \boxed{ \pink {\frak{distance =   \sqrt{ {(x2 - x1)}^{2}  {(y2 - y1)}^{2} }  }}}

\begin{lgathered}\sf{=&gt; Distance = \sqrt{(-5 - 0)^2 + (12 - 0)^2}} \\ \\ \sf{=&gt; Distance = \sqrt{(-5 )^2 + (12 )^2}} \\ \\ \sf{=&gt; Distance = \sqrt{25 + 144}} \\ \\ \sf{=&gt; Distance = \sqrt{169}} \\ \\ \sf{=&gt;Distance = (\sqrt{13})^2} \\ \\ \sf{=&gt; Distance = 13} \\ \\ \Large{\implies{\boxed{\green{\sf{Distance = 13}}}}}\end{lgathered} </p><p>

____________________

hops this may help you

 \huge{ \purple{ \ddot{ \smile}}}

 \huge \blue{ \mathfrak{thanks♡</p><p>}}

Similar questions