Math, asked by sharmamanoj2381, 10 months ago

Find the distance between the following pair of points:
(5, - 12), (9, - 9)

Answers

Answered by Anonymous
1

\Large{\underline{\underline{\bf{Solution :}}}}

We know that,

\Large{\implies{\boxed{\boxed{\sf{Distanve = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}}}}}

Where,

  • x1 = 5
  • x2 = 9
  • y1 = -12
  • y2 = -9

_____________[Put Values]

\sf{→ Distance = \sqrt{(9 - 5)^2 + \big(-9 - (-12)\big)^2}} \\ \\ \sf{→ Distance = \sqrt{(4 )^2 + (-9 + 12 )^2}} \\ \\ \sf{→ Distance = \sqrt{16 + 9}} \\ \\ \sf{→ Distance = \sqrt{25}} \\ \\ \sf{→ Distance = (\sqrt{5})^2} \\ \\ \sf{→ Distance = 5} \\ \\ \Large{\implies{\boxed{\boxed{\sf{Distance = 5}}}}}

Answered by Anonymous
11

  \huge \: \green{ \boxed{ \pink{ \purple{ \mathfrak{\bigstar{answer ♡}}}}}}

 \huge{ \green{ \ddot{ \smile}}}

_____________________________________________

 \boxed{ \pink {\frak{distance =   \sqrt{ {(x2 - x1)}^{2}  {(y2 - y1)}^{2} }  }}}

\begin{lgathered}\sf{=&gt; Distance = \sqrt{(9- 5)^2 + (-9 +12)^2}} \\ \\ \sf{=&gt; Distance = \sqrt{(-4)^2 + (3 )^2}} \\ \\ \sf{=&gt; Distance = \sqrt{16+9}} \\ \\ \sf{=&gt; Distance = \sqrt{25}} \\ \\ \sf{=&gt;Distance = (\sqrt{25})^2} \\ \\ \sf{=&gt; Distance = 5} \\ \\ \Large{\implies{\boxed{\green{\sf{Distance = 5}}}}}\end{lgathered} </p><p>

____________________

hops this may help you

 \huge{ \purple{ \ddot{ \smile}}}

 \huge \blue{ \mathfrak{thanks♡</p><p>}}

Similar questions