Math, asked by ruthrapathic07, 1 month ago

Find the distance between the following pairs of points segment joining the points. A(-6,10) and B(3,-8) ?​

Answers

Answered by ImperialGladiator
3

Answer:

Distance between A and B is 337 units

Explanation:

Given points,

  • A(-6, 10)
  • B(3, -8)

Using distance formula,

\boldsymbol{ \longrightarrow \:  \sqrt{(x_2 - x_1)^2 + (y_2 - y_2)^2} }

Where,

  • \boldsymbol{x_1 = -6 \: \& \: x_2 = 3}
  • \boldsymbol{y_1 = 10 \: \& \: y_2 = -8}

Substituting the coordinates,

\boldsymbol{ \longrightarrow \:  \sqrt{(3 - 6)^2 + ( - 8 - 10)^2} }

\boldsymbol{ \longrightarrow \:  \sqrt{( - 3)^2 + ( - 18)^2} }

 \longrightarrow \: \boldsymbol{  \sqrt{ \:  {9 + 324} }}

 \longrightarrow \: \boldsymbol{  \sqrt{ \:  {333} }}

\longrightarrow \: \boldsymbol{  3\sqrt{ \:  {37} }}

Distance between the points A and B is 337 units

_____________________

Note:

Distance formula,

\boldsymbol{ \longrightarrow \:  \sqrt{(x_2 - x_1)^2 + (y_2 - y_2)^2} }

Where,

\boldsymbol {x_1 \: {\sf and }\: y_1} denotes the coordinate of the first point.

And

\boldsymbol {x_2 \: {\sf and }\: y_2} denotes the coordinate of second point.

Similar questions